Skip to main content
Log in

A durum wheat adult plant stripe rust resistance QTL and its relationship with the bread wheat Yr80 locus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A stripe rust resistance QTL in durum wheat maps near the bread wheat Yr80 locus with the latter reduced to 15 candidate genes.

Abstract

Some wheat adult plant resistance (APR) genes provide partial resistance in the later stages of plant development to rust diseases and are an important component in protecting wheat crops from these fungal pathogens. These genes provide protection in both bread wheat and durum wheat. Here, we have mapped APR to wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, in a cross between durum cultivars Stewart and Bansi. Two resistance QTLs derived from the Stewart parent were identified in multi-generational field trials. One QTL is located on chromosome 1BL and maps to the previously identified Yr29/Lr46/Sr58/Pm39 multi-pathogen APR locus. The second locus, located on chromosome 3BL, maps near the recently described bread wheat APR gene, Yr80. Fine mapping in durum and bread wheat families shows that the durum 3BL locus and Yr80 are closely located, with the later APR gene reduced to 15 candidate genes present in the Chinese Spring genome sequence. Distorted segregation of the durum 3BL region was observed with the Stewart locus preferentially transmitted through pollen when compared with the equivalent Bansi region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and materials are available upon request.

References

  • Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen Kahl G, Winter P, Reifen R (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111:185–195

    CAS  PubMed  Google Scholar 

  • Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C, Guerche C, Loaec M, Lainé M, Steinbach D, Choulet F, Rimbert H, Leroy P, Guilhot N, Salse J, Feuillet C, International Wheat Genome Sequencing Consortium, Paux E, Eversole K, Adam-Blondon AF, Quesneville H (2018) Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19:111

    PubMed  PubMed Central  Google Scholar 

  • Al-Kanj RA, Kassem M, Lababedi G, Al-Husien N (2018) Molecular detection of adult plant leaf rust resistance gene Lr46 in durum wheat germplasm. BGRI Poster Abstract. (https://www.globalrust.org/)

  • Aoun M, Breiland M, Turner MK, Loladze A, Chao S, Xu SS, Ammar K, Anderson JA, Kolmer JA, Acevedo M (2016) Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection. Plant Genome. https://doi.org/10.3835/plantgenome2016.01.0008

    Article  PubMed  Google Scholar 

  • Ayliffe MA, Devilla R, Mago R, White R, Talbot M, Pryor A, Leung H (2011) Non-host resistance of rice to rust pathogens. Mol Plant Microbe Interact 24:1143–1155

    CAS  PubMed  Google Scholar 

  • Ayliffe M, Periyannan SK, Feechan A, Dry I, Schumann U, Wang M-B, Pryor A, Lagudah E (2013) A simple method for comparing fungal biomass in infected plant tissues. Mol Plant Microbe Interact 26:658–667

    CAS  PubMed  Google Scholar 

  • Bansal U, Kazi A, Singh B, Hare R, Barian H (2014) Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed 33:51–59

    CAS  Google Scholar 

  • Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007) Molecular mapping of durable rust resistance in wheat and its implication in breeding. Developments in plant breeding. In: Buck HT, Nisi JE (eds) Wheat production in stressed environments, vol 12. Springer, Dordrecht, pp 723–728

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    CAS  PubMed  Google Scholar 

  • Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X, Mago R, Newell K, Xia X, Bernoux M, Taylor JM, Steffenson B, Jin Y, Zhang P, Kanyuka K, Figueroa M, Ellis JG, Park RF, Dodds PN (2017) Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358:1607–1610

    CAS  PubMed  Google Scholar 

  • Chen S, Rouse MN, Zhang W, Zhang X, Guo Y, Briggs J, Dubcovsky J (2020) Wheat gene Sr60 encodes a protein with two putative kinase domains that confer resistance to stem rust. New Phytol 225:948–959

    CAS  PubMed  Google Scholar 

  • Cobo N, Wanjugi H, Lagudah E, Dubcovsky J (2019) A high-resolution map of wheat QYr.ucw-1BL, an adult plant stripe rust resistance locus in the same chromosomal region as Yr29. Plant Genome 12:180055. https://doi.org/10.3835/plantgenome2018.08.0055

    Article  CAS  Google Scholar 

  • Dong Z, Hegarty JM, Zhang J, Zhang W, Chao S, Chen X, Zhou Y, Dubcovsky J (2017) Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theor Appl Genet 130:2127–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641

    PubMed  PubMed Central  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Jia J, Kong X (2016) A SNP-based molecular barcode for characterization of common wheat. PLoS ONE 11(3):e0150947. https://doi.org/10.1371/journal.pone.0150947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis 103:1166–1171

    CAS  PubMed  Google Scholar 

  • Gou JY, Li K, Wu K, Wang X, Lin H, Cantu D, Uauy C, Dobon-Alonso A, Midorikawa T, Inoue K, Sánchez J, Fu D, Blechl A, Wallington E, Fahima T, Meeta M, Epstein L, Dubcovsky J (2015) Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell 27:1755–1770

    CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161

    CAS  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Salazar VC, Lagdah ES (2011) First report of slow rusting gene Lr46 in durum wheat. In: Technical workshop in Borlaug global rust initiative, ST. Paul, MN

  • Jost M, Singh D, Lagudah E, Park RF, Dracatos P (2020) Fine mapping of leaf rust resistance gene Rph13 from wild barley. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03564-6

    Article  PubMed  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:3735

    PubMed  PubMed Central  Google Scholar 

  • Knott DR (1963) Note on Stewart 63 durum wheat. Can J Plant Sci 43:605–607

    Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    CAS  PubMed  Google Scholar 

  • Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B (2019) Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol 223:853–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan C, Basnet BR, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Ren Y, Randhawa MS (2017) Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. Theor Appl Genet 130:609–619

    CAS  PubMed  Google Scholar 

  • Lan C, Li Z, Herrera-Foessel SA, Huerta-Espino J, Basnet BR, Dreisigacker S, Ren Y, Lagudah ES, Singh RP (2019) Identification and mapping of two adult plant leaf rust resistance genes in durum wheat. Mol Breed 39:118

    Google Scholar 

  • Li GQ, Fang TL, Zhang HT, Xie CJ, Li HJ, Yang TM, Nevo E, Fahima T, Sun QX, Liu ZY (2009) Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:531–539

    CAS  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    CAS  PubMed  Google Scholar 

  • Liu F, Xu W, Song Q, Tan L, Liu J, Zhu Z, Fu Y, Zhen S, Sun C (2013) Microarray-assisted fine-mapping of quantitative loci for cold tolerance in rice. Mol Plant 6:757–767

    CAS  PubMed  Google Scholar 

  • Liu W, Maccaferri M, Rynearson S, Letta T, Zegeye H, Tuberosa R, Chen X, Pumphrey M (2017a) Novel sources of stripe rust resistance identified by genome-wide association mapping in ethiopian durum wheat (Triticum turgidum ssp. durum). Front Plant Sci. https://doi.org/10.3389/fpls.2017.00774

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Maccaferri M, Chen X, Laghetti G, Pignone D, Pumphrey M, Tuberosa R (2017b) Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum). Theor Appl Genet 130:2249–2270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, Boyd L, McIntosh R, Wulff BBH, Berry S, Lagudah E, Uauy C (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants 4:662–668

    CAS  PubMed  Google Scholar 

  • Maschietto V, Cinzia Colombi C, Pirona R, Pea G, Strozzi F, Marocco A, Rossini L, Alessandra Lanubile A (2017) QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol 17:20

    PubMed  PubMed Central  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publishing, Melbourne

    Google Scholar 

  • Miedaner T, Rapp M, Flath K, Longin CFH, Wurschum T (2019) Genetic architecture of yellow and stem rust resistance in a durum wheat diversity panel. Euphytica 215:71

    Google Scholar 

  • Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f.sp. tritici causing stripe rust of wheat. Phytopath 99:89–94

    Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) Recent evolution of a hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    CAS  PubMed  Google Scholar 

  • Nsabiyera V, Bariana HS, Qureshi N, Wong D, Hayden MJ, Bansal UK (2018) Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet 131:1459–1467

    CAS  PubMed  Google Scholar 

  • Nsabiyera V, Baranwal D, Qureshi N, Kay P, Forrest K, Valarik M, Dolezel J, Hayden MJ, Bariana HS, Bansal UK (2019) Fine mapping of Lr49 using 90 K SNP Chip array and flow-sorted chromosome sequencing in wheat. Front Plant Sci 10:1787

    PubMed  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Roder M, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci 10:2489–2494

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria. https://www.R-project.org/

  • Ren Y, Liu L, He Z, Wu L, Bai B, Xia XC (2015) QTL mapping of adult-plant resistance to stripe rust in a Lumai 21 × Jingshuag 16 wheat population. Plant Breed 134:501–507

    CAS  Google Scholar 

  • Rosa SB, Zanella CM, Hiebert CW, Brule-Babel AL, Randhawa HS, Shorter S, Boyd LA, McCallum BD (2019) Genetic characterization of leaf and stripe rust resistance in the Brazilian wheat cultivar Toropi. Phytopathology 109:1760–1768

    CAS  PubMed  Google Scholar 

  • Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S, Chao S, Anderson N, De Soto MF, Rouse M, Szabo L, Bowden RL, Dubcovsky J, Akhunov E (2017) Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358:1604–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88:890–894

    CAS  PubMed  Google Scholar 

  • Thind AK, Wicker T, Simkova H, Fossati D, Moullet O, Brabant C, Vrana J, Dolezel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796

    CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014a) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Cui Y, Chen Y, Zhang D, Liang Y, Zhang D, Wu Q, Xie J, Ouyang S, Li D, Huang Y, Lu P, Wang G, Yu M, Zhou S, Sun Q, Liu Z (2014b) Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. Theor Appl Genet 127:1741–1751

    CAS  PubMed  Google Scholar 

  • Wang S, Li Q-P, Wang J, Yan Y, Zhang G-L, Yan Y, Zhang H, Wu J, Chen F, Wang X, Kang Z, Dubcovsky J, Gou J-Y (2019) YR36/WKS1-mediated phosphorylation of PsbO, an extrinsic member of photosystem II, inhibits photosynthesis and confers stripe rust resistance in wheat. Molecular Plant 12(12):1639–50

    CAS  PubMed  Google Scholar 

  • Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R (2015) QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet 128:1747–1763

    CAS  PubMed  Google Scholar 

  • Wright S (1968) Evolution and genetics of populations. Genetics and biometric foundations, vol 1. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Australian Grains Research and Development Corporation for financial support and the Chinese Scholarship Council for providing a PhD scholarship to HL.

Funding

This research was funded by the Australian Grains Research and Development Corporation and the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

HL and MA produced families and mapped genes. HB, DS and UB undertook field pathology analyses. SD and AW undertook recombination and QTL analysis. LZ undertook student (HL) supervision.

Corresponding author

Correspondence to Michael Ayliffe.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest exist.

Additional information

Communicated by Hermann Buerstmayr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Bariana, H., Singh, D. et al. A durum wheat adult plant stripe rust resistance QTL and its relationship with the bread wheat Yr80 locus. Theor Appl Genet 133, 3049–3066 (2020). https://doi.org/10.1007/s00122-020-03654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03654-5

Navigation