Skip to main content
Log in

The regulation of zein biosynthesis in maize endosperm

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We review the current knowledge regarding the regulation of zein storage proteins biosynthesis and protein body formation, which are crucial processes for the successful accumulation of nutrients in maize kernels.

Abstract

Storage proteins in the seeds of crops in the grass family (Poaceae) are a major source of dietary protein for humans. In maize (Zea mays), proteins are the second largest nutrient component in the kernels, accounting for ~ 10% of the kernel weight. Over half of the storage proteins in maize kernels are zeins, which lack two essential amino acids, lysine and tryptophan. This deficiency limits the use of maize proteins in the food and feed industries. Zeins are encoded by a large super-gene family. During endosperm development, zeins accumulate in protein bodies, which are derived from the rough endoplasmic reticulum. In recent years, our knowledge of the pathways of zein biosynthesis and their deposition within the endosperm has been greatly expanded. In this review, we summarize the current understanding of zeins, including the genes encoding these proteins, their expression patterns and transcriptional regulation, the process of protein body formation, and other biological processes affecting zein accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bhan MK, Bhandari N, Bahl R (2003) Management of the severely malnourished child: perspective from developing countries. BMJ 326:146–151

    PubMed  PubMed Central  Google Scholar 

  • Burr B, Burr FA (1976) Zein synthesis in maize endosperm by polyribosomes attached to protein bodies. Proc Natl Acad Sci U S A 73:515–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri S, Messing J (1994) Allele-Specific Parental Imprinting of Dzr1, a Posttranscriptional Regulator of Zein Accumulation. Proc Natl Acad Sci USA 91:4867–4871

    CAS  PubMed  Google Scholar 

  • Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J (2014) Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol 166:252–264

    PubMed  PubMed Central  Google Scholar 

  • Chui CF, Falco SC (1995) A new methionine-rich seed storage protein from maize. Plant Physiol 107:291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Springer, Dordrecht, pp 109–139

    Google Scholar 

  • Coleman CE, Clore AM, Ranch JP, Higgins R, Lopes MA, Larkins BA (1997) Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize. Proc Natl Acad Sci U S A 94:7094–7097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cord Neto G, Yunes JA, da Silva MJ, Vettore AL, Arruda P, Leite A (1995) The involvement of Opaque 2 on beta-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator. Plant Mol Biol 27:1015–1029

    CAS  PubMed  Google Scholar 

  • Dolfini SF, Landoni M, Tonelli C, Bernard L, Viotti A (1992) Spatial regulation in the expression of structural and regulatory storage-protein genes in Zea-Mays endosperm. Dev Genet 13:264–276

    Google Scholar 

  • Esen A (1987) A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J Cereal Sci 5:117–128

    CAS  Google Scholar 

  • Feng L, Zhu J, Wang G, Tang Y, Chen H, Jin W, Wang F, Mei B, Xu Z, Song R (2009) Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize alpha-zein super gene family. Plant Mol Biol 69:649–659

    CAS  PubMed  Google Scholar 

  • Feng F, Qi W, Lv Y, Yan S, Xu L, Yang W, Yuan Y, Chen Y, Zhao H, Song R (2018) OPAQUE11 Is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell 30:375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Bodnar AL, Scott MP (2009) Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor Appl Genet 119:1129–1142

    PubMed  Google Scholar 

  • Geetha KB, Lending CR, Lopes MA, Wallace JC, Larkins BA (1991) Opaque-2 modifiers increase gamma-zein synthesis and alter its spatial-distribution in maize endosperm. Plant Cell 3:1207–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gevers HO, Lake JK (1992) Development of modified opaque-2 maize in South Africa. In: Mertz ET (ed) Quality protein maize. The American Association of Cereal Chemists, St. Paul, Minn., pp 49–78

    Google Scholar 

  • Gontarek BC, Neelakandan AK, Wu H, Becraft PW (2016) NKD transcription factors are central regulators of maize endosperm development. Plant Cell 28:2916–2936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Yuan L, Chen H, Sato SJ, Clemente TE, Holding DR (2013) Nonredundant function of zeins and their correct stoichiometric ratio drive protein body formation in maize endosperm. Plant Physiol 162:1359–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habben JE, Kirleis AW, Larkins BA (1993) The origin of lysine-containing proteins in opaque-2 maize endosperm. Plant Mol Biol 23:825–838

    CAS  PubMed  Google Scholar 

  • Habben JE, Moro GL, Hunter BG, Hamaker BR, Larkins BA (1995) Elongation factor 1 alpha concentration is highly correlated with the lysine content of maize endosperm. Proc Natl Acad Sci U S A 92:8640–8644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herman EM (2014) Soybean seed proteome rebalancing. Front Plant Sci 5:437

    PubMed  PubMed Central  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holding DR, Larkins BA (2009) Zein storage proteins. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, pp 269–286

    Google Scholar 

  • Holding DR, Otegui MS, Li B, Meeley RB, Dam T, Hunter BG, Jung R, Larkins BA (2007) The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell 19:2569–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holding DR, Hunter BG, Chung T, Gibbon BC, Ford CF, Bharti AK, Messing J, Hamaker BR, Larkins BA (2008) Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet 117:157–170

    CAS  PubMed  Google Scholar 

  • Holding DR, Meeley RB, Hazebroek J, Selinger D, Gruis F, Jung R, Larkins BA (2010) Identification and characterization of the maize arogenate dehydrogenase gene family. J Exp Bot 61:3663–3673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenicke-Despres V, Buckler ES, Smith BD, Gilbert MT, Cooper A, Doebley J, Paabo S (2003) Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208

    CAS  PubMed  Google Scholar 

  • Jia M, Wu H, Clay KL, Jung R, Larkins BA, Gibbon BC (2013) Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2 mutant by transcriptional and proteomic analysis. BMC Plant Biol 13:60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Woo Ym YM, Clore AM, Burnett RJ, Carneiro NP, Larkins BA (2002) Zein protein interactions, rather than the asymmetric distribution of zein mRNAs on endoplasmic reticulum membranes, influence protein body formation in maize endosperm. Plant Cell 14:655–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Hunter BG, Kraft J, Boston RS, Yans S, Jung R, Larkins BA (2004) A defective signal peptide in a 19-kD alpha-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant. Plant Physiol 134:380–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Gibbon BC, Gillikin JW, Larkins BA, Boston RS, Jung R (2006) The maize Mucronate mutation is a deletion in the 16-kDa gamma-zein gene that induces the unfolded protein response. Plant J 48:440–451

    CAS  PubMed  Google Scholar 

  • Kirihara JA, Petri JB, Messing J (1988) Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize. Gene 71:359–370

    CAS  PubMed  Google Scholar 

  • Kodrzycki R, Boston RS, Larkins BA (1989) The opaque-2 mutation of maize differentially reduces zein gene-transcription. Plant Cell 1:105–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai JS, Messing J (2002) Increasing maize seed methionine by mRNA stability. Plant J 30:395–402

    CAS  PubMed  Google Scholar 

  • Larkins BA, Hurkman WJ (1978) Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol 62:256–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1:1011–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, Tang Y, Mei B, Lv Y, Zhao H, Xiao H, Song R (2015) Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. Plant Cell 27:532–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yue Y, Chen H, Qi W, Song R (2018) The ZmbZIP22 transcription factor regulates 27-kD gamma-zein gene transcription during maize endosperm development. Plant Cell 30:2402–2424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Shi J, Sun C, Gong H, Fan X, Qiu F, Huang X, Feng Q, Zheng X, Yuan N, Li C, Zhang Z, Deng Y, Wang J, Pan G, Han B, Lai J, Wu Y (2016) Gene duplication confers enhanced expression of 27-kDa gamma-zein for endosperm modification in quality protein maize. Proc Natl Acad Sci U S A 113:4964–4969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes MA, Larkins BA (1991) Gamma-Zein Content is Related to Endosperm Modification in Quality Protein Maize. Crop Sci 31:1655–1662

    CAS  Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280

    CAS  PubMed  Google Scholar 

  • Messing J, Fisher H (1991) Maternal effect on high methionine levels in hybrid corn. J Biotechnol 21:229–237

    CAS  Google Scholar 

  • Miclaus M, Wu Y, Xu JH, Dooner HK, Messing J (2011) The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein. Genetics 189:1271–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson OE (2001) Maize: the long trail to QPM. In: Reeve ECR (ed) Encyclopedia of Genetics. Fitzroy Dearborn, London/Chicago, pp 657–660

    Google Scholar 

  • Nelson OE, Mertz ET, Bates LS (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469–1470

    CAS  PubMed  Google Scholar 

  • Osborne TB, Mendel LB, Ferry EL, Wakeman AJ (1914) Nutritive properties of proteins of the maize kernel. J Biol Chem 18:1–16

    CAS  Google Scholar 

  • Pedersen K, Devereux J, Wilson DR, Sheldon E, Larkins BA (1982) Cloning and sequence-analysis reveal structural variation among related zein genes in maize. Cell 29:1015–1026

    CAS  PubMed  Google Scholar 

  • Pedersen K, Argos P, Naravana SV, Larkins BA (1986) Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of Mr 15,000. J Biol Chem 261:6279–6284

    CAS  PubMed  Google Scholar 

  • Planta J, Xiang XL, Leustek T, Messing J (2017) Engineering sulfur storage in maize seed proteins without apparent yield loss. Proc Natl Acad Sci U S A 114:11386–11391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prat S, Perez-Grau L, Puigdomenech P (1987) Multiple variability in the sequence of a family of maize endosperm proteins. Gene 52:41–49

    CAS  PubMed  Google Scholar 

  • Pysh LD, Schmidt RJ (1996) Characterization of the maize OHP1 gene: evidence of gene copy variability among inbreds. Gene 177:203–208

    CAS  PubMed  Google Scholar 

  • Pysh LD, Aukerman MJ, Schmidt RJ (1993) OHP1: a maize basic domain/leucine zipper protein that interacts with opaque2. Plant Cell 5:227–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Z, Qi W, Wang Q, Feng Y, Yang Q, Zhang N, Wang S, Tang Y, Song R (2016) ZmMADS47 regulates zein gene transcription through interaction with Opaque2. PLoS Genet 12:e1005991

    PubMed  PubMed Central  Google Scholar 

  • Schmidt RJ, Burr FA, Burr B (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238:960–963

    CAS  PubMed  Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci U S A 87:46–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4:689–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt MA, Barbazuk WB, Sandford M, May G, Song Z, Zhou W, Nikolau BJ, Herman EM (2011) Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Physiol 156:330–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segal G, Song R, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Messing J (2002) Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. Plant Physiol 130:1626–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A 100:9055–9060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Llaca V, Linton E, Messing J (2001) Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res 11:1817–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res 12:1549–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasal SK, Villegas E, Bjarnason M, Gelaw B, Goertz P (1980) Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. Martinus Nijhoff, The Hague, pp 37–73

    Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci U S A 94:7685–7690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace JC, Lopes MA, Paiva E, Larkins BA (1990) New methods for extraction and quantitation of zeins reveal a high content of gamma-zein in modified opaque-2 maize. Plant Physiol 92:191–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Sun X, Wang G, Wang F, Gao Q, Sun X, Tang Y, Chang C, Lai J, Zhu L, Xu Z, Song R (2011) Opaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm. Genetics 189:1281–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Wang F, Wang G, Wang F, Zhang X, Zhong M, Zhang J, Lin D, Tang Y, Xu Z, Song R (2012) Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell 24:3447–3462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Qi W, Wu Q, Yao D, Zhang J, Zhu J, Wang G, Wang G, Tang Y, Song R (2014a) Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol 165:582–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H, Xu N, Zhong M, Qiao Z, Tang Y, Song R (2014b) Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. Plant Cell 26:2582–2600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Wang G, Wang J, Du Y, Yao D, Shuai B, Han L, Tang Y, Song R (2016) Comprehensive proteomic analysis of developing protein bodies in maize (Zea mays) endosperm provides novel insights into its biogenesis. J Exp Bot 67:6323–6335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wienand U, Langridge P, Feix G (1981) Isolation and characterization of a genomic sequence of maize coding for a zein gene. Mol Gen Genet 182:440–444

    CAS  Google Scholar 

  • Wilson DR, Larkins BA (1984) Zein gene organization in maize and related grasses. J Mol Evol 20:330–340

    CAS  PubMed  Google Scholar 

  • Woo YM, Hu DW, Larkins BA, Jung R (2001) Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13:2297–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Messing J (2010) RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins. Plant Physiol 153:337–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Messing J (2012) Rapid divergence of prolamin gene promoters of maize after gene amplification and dispersal. Genetics 192:507–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Messing J (2014) Proteome balancing of the maize seed for higher nutritional value. Front Plant Sci 5:240

    PubMed  PubMed Central  Google Scholar 

  • Wu Y, Goettel W, Messing J (2009) Non-Mendelian regulation and allelic variation of methionine-rich delta-zein genes in maize. Theor Appl Genet 119:721–731

    CAS  PubMed  Google Scholar 

  • Wu Y, Holding DR, Messing J (2010) Gamma-zeins are essential for endosperm modification in quality protein maize. Proc Natl Acad Sci U S A 107:12810–12815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang W, Messing J (2012) Balancing of sulfur storage in maize seed. BMC Plant Biol 12:77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang X, Wu Y, Planta J, Messing J, Leustek T (2018) Overexpression of serine acetyltransferase in maize leaves increases seed-specific methionine-rich zeins. Plant Biotechnol J 16:1057–1067

    CAS  PubMed  Google Scholar 

  • Xu JH, Messing J (2008) Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize. Mol Plant 1:760–769

    CAS  PubMed  Google Scholar 

  • Yang J, Ji C, Wu Y (2016) Divergent transactivation of maize storage protein zein genes by the transcription factors Opaque2 and OHPs. Genetics 204:581–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Fu M, Ji C, Huang Y, Wu Y (2018) Maize oxalyl-CoA decarboxylase1 degrades oxalate and affects the seed metabolome and nutritional quality. Plant Cell 30:2447–2462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao D, Qi W, Li X, Yang Q, Yan S, Ling H, Wang G, Wang G, Song R (2016) Maize opaque10 encodes a cereal-specific protein that is essential for the proper distribution of zeins in endosperm protein bodies. PLoS Genet 12:e1006270

    PubMed  PubMed Central  Google Scholar 

  • Zhan J, Li G, Ryu CH, Ma C, Zhang S, Lloyd A, Hunter BG, Larkins BA, Drews GN, Wang X, Yadegari R (2018) Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell 30:2425–2446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yang J, Wu Y (2015) Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque2, prolamine-box binding factor, and O2 heterodimerizing proteins. Plant Cell 27:1162–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng X, Yang J, Messing J, Wu Y (2016) Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci U S A 113:10842–10847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Dong J, Ji C, Wu Y, Messing J (2019) NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci U S A 116:11223–11228

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31730065, and 31425019 to RS) and the National Key Research and Development Program of China (2016YFD0101003 to RS).

Author information

Authors and Affiliations

Authors

Contributions

RS conceived and outlined the review. CL and RS performed the literature search. CL wrote the first draft. CL and RS edited it in several rounds of reading.

Corresponding author

Correspondence to Rentao Song.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Mingliang Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Song, R. The regulation of zein biosynthesis in maize endosperm. Theor Appl Genet 133, 1443–1453 (2020). https://doi.org/10.1007/s00122-019-03520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03520-z

Navigation