Skip to main content
Log in

Transcriptome analysis revealed sh2 gene mutation leads reduced zein protein accumulation in maize endosperm

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Maize plants with a mutation of the shrunken2 (sh2) gene are characterized by a collapsed kernel, a phenotype that is associated with reduced starch synthesis. Zeins are the main storage protein in maize and are encoded by a large gene family. In the sh2 mutant, zein accumulation is significantly lower than that of wild-type maize during the kernel-filling stage. To gain a better understanding of how the sh2 gene mutation affects zein accumulation, we compared the gene expression profiles of the sh2 mutant and wild-type maize by RNA sequencing analysis and quantitative real-time PCR. A total of 4457 differentially expressed genes were identified and the top enriched metabolic processes included genes involved in sugar metabolism, storage protein synthesis, and amino acid metabolism, as well as genes encoding transcription factor family and auxin-binding proteins. Our results indicate that mutation of the sh2 gene in maize endosperm affects the transcript and protein levels of zein genes, whereas little change was observed in the expression level of known zein-regulated genes, such as the endosperm-specific transcription factor Opaque2 (O2), the prolamine-box binding factor, the O2 heterodimerizing proteins (OHP1 and OHP2), and the MADS-box protein ZmMADS47. We accordingly suspect that zein production might be affected by transcriptional and post-transcriptional regulation through changes in transcription factors and metabolic enzyme expression, rather than by regulation of the genes directly associated with zein biosynthesis. These findings indicate that carbon and nitrogen metabolic pathways are tightly coordinated to ensure appropriate development of the maize endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq–a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynth Res 79:1–24

    Article  CAS  PubMed  Google Scholar 

  • Bertoni G (2012) Maize opaque1 and protein body formation. Plant Cell 24:3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehlein SK, Shaw JR, Boehlein TJ, Boehlein EC, Hannah LC (2018) Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. Plant J 96:595–606

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J (2014) Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol 166:252–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman C, Larkins B (1999) The prolamins of maize. Seed proteins. Springer, Dordrecht, pp 109–139

    Chapter  Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signling in plants. Plant Physiol 125:61–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotelle V, Meek SE, Provan F, Milne FC, Morrice N, MacKintosh C (2000) 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J 19:2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doehlert DC, Kuo TM (1994) Gene expression in developing kernels of some endosperm mutants of maize. Plant Cell Physiol 35:411–418

    CAS  Google Scholar 

  • Echt CS, Chourey PS (1985) A comparison of two sucrose synthetase isozymes from normal and shrunken-1 maize. Plant Physiol 79:530–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esen A (1987) A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J Cereal Sci 5:117–128

    Article  CAS  Google Scholar 

  • Feng L, Zhu J, Wang G, Tang Y, Chen H, Jin W, Wang F, Mei B, Xu Z, Song R (2009) Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize alpha-zein super gene family. Plant Mol Biol 69:649–659

    Article  CAS  PubMed  Google Scholar 

  • Finegan C, Boehlein SK, Leach KA, Madrid G, Hannah LC, Koch KE, Tracy WF, Resende MF Jr (2022) Genetic perturbation of the starch biosynthesis in maize endosperm reveals sugar-responsive gene networks. Front Plant Sci 12:800326. https://doi.org/10.3389/fpls.2021.800326

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao C, Qi S, Liu K, Li D, Jin C, Li Z, Huang G, Hai J, Zhang M, Chen M (2016) MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis. Plant Physiol Biochem 108:63–70

    Article  CAS  PubMed  Google Scholar 

  • Geetha KB, Lending CR, Lopes MA, Wallace JC, Larkins BA (1991) Opaque-2 modifiers increase gamma-zein synthesis and alter its spatial-distribution in maize endosperm. Plant Cell 3:1207–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbon BC, Larkins BA (2005) Molecular genetic approaches to developing quality protein maize. Trends Genet 21:227–233

    Article  CAS  PubMed  Google Scholar 

  • Godfray HC, Beddington JR, Crute LR, Haddad L, Lawrence D (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Yuan L, Chen H, Sato SJ, Clemente TE, Holding DR (2013) Nonredundant function of zeins and their correct stoichiometric ratio drive protein body formation in maize endosperm. Plant Physiol 162:359–1369

    Article  Google Scholar 

  • Heidecker G, Messing J (1986) Structural analysis of plant genes. Annu Rev Plant Physiol 37:439–466

    Article  CAS  Google Scholar 

  • Holding DR, Hunter BG, Chung T, Gibbon BC, Ford CF, Bharti AK, Messing J, Hamaker BR, Larkins BA (2008) Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet 117:157–170

    Article  CAS  PubMed  Google Scholar 

  • Kang SG, Price J, Lin PC, Hong JC, Jang JC (2010) The arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Mol Plant 3:361–373

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Delhaye S, Damerval C (2000) Improved method for isolating and quantitating α-amino nitrogen as nonprotein, true protein, salt-soluble proteins, zeins, and true glutelins in maize endosperm. Cereal Chem 77:620–626

    Article  CAS  Google Scholar 

  • LeClere S, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 153:306–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Lee SK, Phee BK, Jeon JS (2015) Proteomic analysis of the rice endosperm starch-deficient mutants osagps2 and osagpl2. J Plant Biol 58:252–258

    Article  CAS  Google Scholar 

  • Li C, Song R (2020) The regulation of zein biosynthesis in maize endosperm. Theor Appl Genet 133:1443–1453

    Article  CAS  PubMed  Google Scholar 

  • Li GS, Wang DF, Yang RL, Logan K, Chen H, Zhang SS, Skaggs M, Lioyd A, Burnett WJ, Laurie JD, Hunter BG, Dannenhoffer JM, Larkins BA, Drews GN, Wang XF, Yadegari R (2014) Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci USA 111:7582–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CB, Qiao ZY, Qi WW, Wang Q, Yuan Y, Yang X, Tang YP, Mei B, Lv YD, Zhan H, Xiao H, Song RT (2015) Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell 27:532–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault A, Rousselet A, Feminias N, Consoli L, Mechin V, Murigneux A, Prioul J, Charcosset A, Damerval C (2009) Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize. Plant Physiol 150:506–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Marzabal P, Gas E, Fontanet P, Vicente-Carbajosa J, Torrent M, Ludevid MD (2008) The maize Dof protein PBF activates transcription of gamma-zein during maize seed development. Plant Mol Biol 67:441–454

    Article  CAS  PubMed  Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280

    Article  CAS  PubMed  Google Scholar 

  • Motto M, Thompson R, Salamini F (1997) Genetic regulation of carbohydrate and protein accumulation in seeds. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, Dordrecht, pp 479–522

    Chapter  Google Scholar 

  • Müller M, Dues G, Balconi C, Salamini F, Thompson RD (1997) Nitrogen and hormonal responsiveness of the 22 kDa α-zein and b-32 genes in maize endosperm is displayed in the absence of the transcriptional regulator Opaque-2. Plant J 12:281–291

    Article  PubMed  Google Scholar 

  • Muller-Rober B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11:1229–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price J, Laxmi A, St Martin SK, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prioul JL, Méchin V, Damerval C (2008) Molecular and biochemical mechanisms in maize endosperm development: the role of pyruvate-Pi-dikinase and Opaque2 in the control of C/N ratio. CR Biol 331:772–779

    Article  CAS  Google Scholar 

  • Qiao ZY, Qi WW, Wang Q, Feng YN, Yang Q, Zhang N, Wang SS, Tang YP, Song RT (2016) ZmMADS47 regulates zein gene transcription through interaction with Opaque2. PLoS Genet 12:e1005991

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandrine A, Zhao H, Qin Y, Sun Q, Gong D, Pan Z, Qiu FZ (2020) 22KD Zein content coordinates transcriptional activity during starch synthesis in maize endosperm. Agronomy 10:624–637

    Article  CAS  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene Opaque-2 encodes a protein with a leucine-zipper motif that binds to zein DNA. Proc Natl Acad Sci USA 87:46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen J (1991) Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3:225–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CY, Nelson OE (1966) Starch-deficient maize mutant lacking adenosine dephosphate glucose pyrophosphorylase activity. Science 151:341–343

    Article  CAS  PubMed  Google Scholar 

  • Ufaz S, Galili G (2008) Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol 147:954–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ 32:1211–1229

    Article  PubMed  Google Scholar 

  • Vasal SK, Villegas E, Bjarnason M, Gelaw B, Goertz P (1980) Genetic modifiers and breeding strategies in developing hard endosperm opaque 2 materials. In: Pollmer WG, Phipps RH (eds) Improvement of quality traits of maize for grain and silage use. Martinus Nijhoff, London, pp 37–73

    Google Scholar 

  • Wu Y, Messing J (2012) RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm. PLoS ONE 7:e32850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Ji C, Wu YR (2016) Divergent transactivation of maize storage protein zein genes by the transcription factors Opaque2 and OHPs. Genetics 204:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cao G, Qu LJ, Gu H (2009) Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis. Plant Cell Rep 28:337–346

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yang J, Wu Y (2015) Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque2, prolamine-box binding factor, and O2 heterodimerizing proteins. Plant Cell 27:1162–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng X, Yang J, Messing J, Wu Y (2016) Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA 113:10842–10847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Henan Fundamental and Frontier Research Fund (162300410178), the Science and Technology Project of Henan Province (212102110279), Molecular design breeding of maize (2016YFD0101803), and the Henan Academy of Agricultural Sciences Foundation for Excellent Young Scholars (2013YQ006).

Author information

Authors and Affiliations

Authors

Contributions

XHH designed the study, analysed the data and drafted the manuscript. WX performed the experiments. BZ revised the manuscript, and all authors have carefully checked and approved the final draft of the manuscript.

Corresponding author

Correspondence to Xiaohua Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zhou, B. & Xu, W. Transcriptome analysis revealed sh2 gene mutation leads reduced zein protein accumulation in maize endosperm. Genet Resour Crop Evol 70, 1663–1676 (2023). https://doi.org/10.1007/s10722-022-01526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01526-z

Keywords

Navigation