Skip to main content
Log in

Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L.

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Based on genome resequencing, a strong candidate gene Capana02g002096 was identified in this study. Capana02g002096 encodes a homolog of AtDYT1 which is a bHLH transcription factor and involves in the early tapetal development.

Abstract

Genic male-sterile line is an efficient tool for commercial hybrid seed production in pepper; however, so far, only few genes controlling this trait have been cloned. A spontaneous genic male-sterile mutant, msc-1, had been identified and widely used in China, of which the male-sterile trait was proved to be controlled by a single recessive locus. For cloning the gene(s) underlying the msc-1 locus, genome resequencing and comparison analyses were performed between male-sterile and male-fertile lines. According to the genomic variations and genes’ annotations, Capana02g002096 was selected as a candidate gene underlying the msc-1 locus. Capana02g002096 encodes a homolog of AtDYT1, which is a bHLH transcription factor and involves in the early tapetal development. Moreover, a 7-bp deletion was identified in the exon of Capana02g002096, which led to a premature stop codon and may cause a loss-of-function mutation. Further genotyping in the 16C1369AB population containing 1110 plants, a F2 population consisting of 510 plants and 46 inbreed lines revealed that the male-sterile phenotype was co-segregated with the 7-bp deletion. Additionally, real-time PCR analysis revealed that Capana02g002096 was an anther-specific gene and repression of the gene’s expression through VIGS led to male-sterile phenotype. Therefore, based on the evidence at genetic, genomic, transcriptional and posttranscriptional levels, Capana02g002096 was considered as a strong candidate gene underlying the msc-1 locus in pepper and was renamed Msc-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ariizumi T, Toriyama K (2007) Pollen exine pattern formation is dependent on three major developmental processes in Arabidopsis thaliana. Annu Rev Plant Biol 62:437–460

    Article  CAS  Google Scholar 

  • Aulakh PS, Dhaliwal MS, Jindal SK, Schafeitner R, Singh K (2016) Mapping of male sterility gene ms10 in chilli pepper (Capsicum annuum L.). Plant Breed 135:531–535

    Article  CAS  Google Scholar 

  • Bartoszewski G, Waszczak C, Gawroński P, Stępień I, BolibokBrągoszewska H, Palloix A, Lefebvre V, Korzeniewska A, Niemirowicz-Szczytt K (2012) Mapping of the ms8 male sterility gene in sweet pepper (Capsicum annuum L.) on the chromosome P4 using PCR-based markers useful for breeding programmes. Euphytica 186:453–461

    Article  CAS  Google Scholar 

  • Chen L, Liu Y (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65(1):579–606

    Article  PubMed  CAS  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells 17(2):377–380

    PubMed  CAS  Google Scholar 

  • Dhaliwal MS, Jindal SK (2014) Induction and exploitation of nuclear and cytoplasmic male sterility in pepper (Capsicum spp.): a review. J Hortic Sci Biotechnol 89:471–479

    Article  Google Scholar 

  • Dickinson HG, Heslop-Harrison J (1968) Common mode of deposition for the sporopollenin of sexine and nexine. Nature 220:926–927

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Zhang Q (2018) Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod 31(1):3–14

    Article  PubMed  CAS  Google Scholar 

  • Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B, Scolaro E, Collinson S et al (2017) A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J 15:942–952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu JN, Zhu J, Yu Y, Teng XD, Lou Y, Xu XF, Liu JL, Yang ZN (2014) DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J. 80:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Zhao F, Gao S, Wang X, Wei A, Chen Z, Liu N, Tong X, Fu X, Wen C, Zhang Z, Wang N, Du S (2017) Fine mapping of a male sterility gene ms-3 in a novel cucumber (Cucumis sativus L.) mutant. Theor Appl Genet 131(2):449–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He J, Ke L, Hong D, Xie Y, Wang G, Liu P, Yang G (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet 117:11–18

    Article  PubMed  CAS  Google Scholar 

  • Healey A, Furtado A, Cooper T, Henry RJ (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heslop-Harrison J (1962) Origin of exine. Nature 195:1069–1071

    Article  CAS  Google Scholar 

  • Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23:687–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Z, Chen Y, Yi B, Xiao L, Ma C, Tu J, Fu T (2007) Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet 115:113–118

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, Bae JH, Lee HA, Joung YH, Choi D, Kang BC (2014) Tomato Male-sterile 10 35 is essential for pollen development and meiosis in anthers. J Exp Bot 65(22):6693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong K, Choi D, Lee J (2018) Fine mapping of the genic male-sterile ms 1 gene in Capsicum annuum L. Theor Appl Genet 131(1):183–191

    Article  PubMed  CAS  Google Scholar 

  • Jia JH, Zhang DS, Li CY, Qu XP, Wang SW, Chamarerk V, Nguyen HT, Wang B (2001) Molecular mapping of the reverse thermo-sensitive genic male-sterile gene (rtms1) in rice. Theor Appl Genet 103:607–612

    Article  CAS  Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 1–2. Springer, Berlin

    Book  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YJ, Zhang D (2018) Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci 23(1):53–65

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Singh V, Singh M, Rai S, Kumar S, Rai SK, Rai M (2007) Genetics and distribution of fertility restoration associated RAPD markers in pepper (Capsicum annuum L.). Sci Hortic 111:197–202

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Han JH, An CG, Lee WP, Yoon JB (2010a) A CAPS marker linked to a genic male-sterile gene in the colored sweet pepper, ‘Paprika’ (Capsicum annuum L.). Breed Sci 60:93–98

    Article  CAS  Google Scholar 

  • Lee J, Lee WP, Han JH, Yoon JB (2010b) Development of molecular marker linked to a genic male-sterile gene, ms k in chili pepper. Korean J Hortic Sci Technol 28:270–274

    CAS  Google Scholar 

  • Lee J, Yoon JB, Han JH, Lee WP, Kim SH, Park HG (2010c) Three AFLP markers tightly linked to the genic male sterility ms 3 gene in chili pepper (Capsicum annuum L.) and conversion to a CAPS marker. Euphytica 173:55–61

    Article  CAS  Google Scholar 

  • Lee J, Do JW, Han JH, An CG, Kweon OY, Kim YK, Yoon JB (2011) Allelism and molecular marker tests for genic male sterility in paprika cultivars. Korean J Hortic Sci Technol 29:130–134

    Google Scholar 

  • Lee HR, An HJ, Yang DC, Choi SH, Kim HJ (2012) Development of a high resolution melting (HRM) marker linked to genic male sterility in Capsicum annuum L. Plant Breeding 131:444–448

    Article  CAS  Google Scholar 

  • Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T (2007) Towards map based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet 115:643–651

    Article  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18(11):2999–3014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Hong D, He J, Ma L, Wan L, Liu P, Yang G (2012) Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theor Appl Genet 125:223–234

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Ma Y, Wu J, Cheng F, Liu B, Wang X (2017) Map-based cloning of the dominant genic male sterile Ms-cd1 gene in cabbage (Brassica oleracea). Theor Appl Genet 130(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Ma N, Wang PY, Fu N, Shen HL (2013) Transcriptome sequencing and de novo analysis of a cytoplasmic male-sterile line and its near-isogenic restorer line in chili pepper (Capsicum annuum L.). PLoS ONE 8(6):e65209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by achimeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng HF, Zhang ZF, Wu B, Chen XH, Zhang GQ, Zhang ZM, Wan BH, Lu YP (2008) Molecular mapping of two reverse photoperiodsensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.). Theor Appl Genet 118:77–83

    Article  PubMed  CAS  Google Scholar 

  • Peng HF, Chen XH, Lu YP, Peng YF, Wan BH, Chen ND, Wu B, Xin SP, Zhang GQ (2010) Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theor Appl Genet 120:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7(5):199–203

    Article  PubMed  CAS  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Plant Reprod 11(2):65–80

    Article  CAS  Google Scholar 

  • Pucci A, Picarella ME, Mazzucato A (2017) Phenotypic, genetic and molecular characterization of 7B–1, a conditional male-sterile mutant in tomato. Theor Appl Genet 130(11):2361–2374

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Liu Q, Zhang L, Mao B, Yan D, Jin Q, He Z (2014) Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theor Appl Genet 127:1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. PNAS 111(14):5135–5140

    Article  PubMed  CAS  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge, pp 357–393

    Book  Google Scholar 

  • Shifriss C (1997) Male sterility in pepper (Capsicum annuum L.). Euphytica 93:83–88

    Article  Google Scholar 

  • Swamy BN, Hedau NK, Chaudhari GV, Kant L, Pattanayak A (2017) CMS system and its stimulation in hybrid seed production of Capsicum annuum L. Sci Hortic 222:175–179

    Article  Google Scholar 

  • Wang D, Bosland PW (2006) The genes of Capsicum. HortScience 41:1169–1187

    CAS  Google Scholar 

  • Wang YG, Xing QH, Deng QY, Liang FS, Yuan LP, Weng ML, Wang B (2003) Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theor Appl Genet 107:917–921

    Article  PubMed  CAS  Google Scholar 

  • Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubeze AM, Palloix A (2004) Qtl analysis of fertility restoration in cytoplasmic male-sterile pepper. Theor Appl Genet 109:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Wang DX, Skibbe DS, Walbot V (2013) Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reprod 26:329–338

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Wu S, Li Z, Zhou Y, Zhang D, Dong Z, An X, Zhu T, Zhang S, Liu S, Li J, Wan X (2018) Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theor Appl Genet. https://doi.org/10.1007/s00122-018-3083-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Wang B, Wu Y, Du P, Wang J, Wang M, Yi C, Gu M, Liang G (2011) Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.). Theor Appl Genet 122:365–372

    Article  PubMed  Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26:1544–1556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi B, Chen Y, Lei S, Tu J, Fu T (2006) Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet 113:643–650

    Article  PubMed  CAS  Google Scholar 

  • Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Tu J, Fu T (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J. 63(6):925–938

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Li W, Wu Y, Liu F, Luo J, Cao Y, Zhu L, Li Y, Li J, You Q, Wu G (2014) Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP- and Brassica rapa-derived PCR markers. Theor Appl Genet 127(8):1733–1740

    Article  PubMed  CAS  Google Scholar 

  • Zhang BX, Huang SW, Yang GM, Guo JZ (2000) Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica 113:155–161

    Article  CAS  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Wu S, An X, Xie K, Dong Z, Zhou Y, Xu L, Fang W, Liu S, Liu S, Zhu T, Li J, Rao L, Zhao J, Wan X (2018) Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu YG, Zhuang C (2012) Photoperiod- and thermosensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L et al (2014) RNase ZS1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun 5:4884

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55:266–277

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Lou Y, Xu X, Yang ZN (2011) A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol 53:892–900

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The National Key Research and Development Program of China (2017YFD0101903) and the Beijing Fruit Vegetables Innovation Team of Modern Agricultural Industry Technology System (BAIC01-2018).

Author information

Authors and Affiliations

Authors

Contributions

QC performed most of the experiments, analyzed the data and drafted the manuscript. LS draw the figures and modified the manuscript. PW and QL performed VIGS experiments. LW and ZZ participated in DNA extraction. TL and WG performed the qRT-PCR analysis. WY revised the manuscript. HS and LS designed and directed the entire study. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Liang Sun or Huolin Shen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Michael J. Havey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Wang, P., Liu, J. et al. Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L.. Theor Appl Genet 131, 1861–1872 (2018). https://doi.org/10.1007/s00122-018-3119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3119-1

Navigation