Skip to main content
Log in

Bayesian QTL mapping using genome-wide SSR markers and segregating population derived from a cross of two commercial F1 hybrids of tomato

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Using newly developed euchromatin-derived genomic SSR markers and a flexible Bayesian mapping method, 13 significant agricultural QTLs were identified in a segregating population derived from a four-way cross of tomato.

Abstract

So far, many QTL mapping studies in tomato have been performed for progeny obtained from crosses between two genetically distant parents, e.g., domesticated tomatoes and wild relatives. However, QTL information of quantitative traits related to yield (e.g., flower or fruit number, and total or average weight of fruits) in such intercross populations would be of limited use for breeding commercial tomato cultivars because individuals in the populations have specific genetic backgrounds underlying extremely different phenotypes between the parents such as large fruit in domesticated tomatoes and small fruit in wild relatives, which may not be reflective of the genetic variation in tomato breeding populations. In this study, we constructed F2 population derived from a cross between two commercial F1 cultivars in tomato to extract QTL information practical for tomato breeding. This cross corresponded to a four-way cross, because the four parental lines of the two F1 cultivars were considered to be the founders. We developed 2510 new expressed sequence tag (EST)-based (euchromatin-derived) genomic SSR markers and selected 262 markers from these new SSR markers and publicly available SSR markers to construct a linkage map. QTL analysis for ten agricultural traits of tomato was performed based on the phenotypes and marker genotypes of F2 plants using a flexible Bayesian method. As results, 13 QTL regions were detected for six traits by the Bayesian method developed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert E, Gricourt J, Bertin N, Bonnefoi J, Pateyron S, Tamby JP, Bitton F, Causse M (2016) Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression. Theor Appl Genet 129:395–418

    Article  PubMed  Google Scholar 

  • Ashrafi H, Kinkade MP, Merk HL, Foolad MR (2012) Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol Breed 30:549–567

    Article  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW (2012) Genotype probabilities at intermediate generations in the construction of recombinant inbred lines. Genetics 190:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley PG, Poole M, Causse M, King GJ, Baxter C, Seymour GB (2012) High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159:1644–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, St. Clair DA, Beelaman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa JM, Heuvelink E (2005) Introduction: the tomato crop and industry. In: Heuvelink E (ed) Tomatoes. CABI Publishing, Wallingford, pp 1–19

    Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Estan MT, Villalta I, Bolarin MC, Carbonell EA, Asins MJ (2009) Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theor Appl Genet 118:305–312

    Article  CAS  PubMed  Google Scholar 

  • FAO (2013) Faostat. Food and agriculture organization of the united nations. http://faostat.fao.org

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007:64358

    PubMed  PubMed Central  Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka H, Nunome T, Minamiyama Y, Kono I, Namiki N, Kojima A (2005) Read2marker: a data processing tool for microsatellite marker development from a large data set. Biotechniques 39:472–476

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum ×Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, López J, Pétiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Ganal MW (2013) Molecular markers, genetic maps and association studies in tomato. In: Liedl BE, Labate JA, Stommel JR, Slade A, Kole C (eds) Genetics, genomics and breeding of tomato. Science Publishers, Enfield, pp 92–108

    Chapter  Google Scholar 

  • Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656

    Article  PubMed  Google Scholar 

  • Grandillo S, Tanksley SD (1996) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  PubMed  Google Scholar 

  • Grandillo S, Pasquale T, van der Knaap E (2013) Molecular mapping of complex traits in tomato. In: Liedl BE, Labate JA, Stommel JR, Slade A, Kole C (eds) Genetics, genomics and breeding of tomato. Science Publishers, Enfield, pp 150–227

    Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 69:315–324

    Article  CAS  Google Scholar 

  • Hayashi T, Ohyama A, Iwata H (2012) Bayesian QTL mapping for recombinant inbred lines derived from a four-way cross. Euphytica 183:277–287

    Article  Google Scholar 

  • Heuvelink E (2005) Developmental processes. In: Heuvelink E (ed) Tomatoes. CABI Publishing, Wallingford, pp 53–83

    Chapter  Google Scholar 

  • Hirakawa H, Shirasawa K, Ohyama A, Fukuoka H, Aoki K, Rothan C, Sato S, Isobe S, Tabata S (2013) Genome-wide SNP genotyping to infer the effects on gene functions in tomato. DNA Res 20:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Zeng ZB (1997) Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101:47–58

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin I, Schaffer AA (2013) Mapping and tagging of simply inherited traits. In: Liedl BE, Labate JA, Stommel JR, Slade A, Kole C (eds) Genetics, genomics and breeding of tomato. Science Publishers, Enfield, pp 109–149

    Chapter  Google Scholar 

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Stadler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD (2005) The SOL genomics network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama A, Hayashi T (2016) DNA markers, experimental populations and quantitative trait locus (QTL) mapping in tomatoes. In: Higashide T (ed) Solanum lycopersicum: production, biochemistry and health benefits. Nova Science Publishers Inc, New York, pp 49–78

    Google Scholar 

  • Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H (2009) Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breed 23:685–691

    Article  CAS  Google Scholar 

  • Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B, Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J 13:565–577

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pillen K, Pineda O, Candice BL, Tanksley SD (1996) Status of genome mapping tools in the taxon Solanaceae. Genome mapping in plants. R. G. Landes Company, Austin, pp 281–308

    Google Scholar 

  • Ranc N, Munos S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 (Bethesda) 2:853–864

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the www for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Ruggieri V, Francese G, Sacco A, D’Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A (2014) An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol 14:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabatini E, Beretta M, Sala T, Acciarri N, Milc J, Pecchioni N (2013) Molecular breeding. In: Liedl BE, Labate JA, Stommel JR, Slade A, Kole C (eds) Genetics, genomics and breeding of tomato. Science Publishers, Enfield, pp 228–303

    Chapter  Google Scholar 

  • Sauvage C, Segura V, Bauchet G, Stevens R, Do PT, Nikoloski Z, Fernie AR, Causse M (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165:1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JW, James RM, Peter SB, Courtland GN, Frederic FA (2013) Classical genetics and traditional breeding. In: Liedl BE, Labate JA, Stommel JR, Slade A, Kole C (eds) Genetics, genomics and breeding of tomato. Science Publishers, Enfield, pp 37–73

    Chapter  Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010a) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Isobe S, Hirakawa H, Asamizu E, Fukuoka H, Just D, Rothan C, Sasamoto S, Fujishiro T, Kishida Y, Kohara M, Tsuruoka H, Wada T, Nakamura Y, Sato S, Tabata S (2010b) SNP discovery and linkage map construction in cultivated tomato. DNA Res 17:381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, Isobe S, Tabata S (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20:593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim SC, Robbins MD, Van Deynze A, Michel AP, Francis DM (2011) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity (Edinb) 106:927–935

    Article  CAS  Google Scholar 

  • Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YD, Liang Y, Wu JM, Li YZ, Cui X, Qin L (2012) Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum × S. pimpinellifolium cross. Genet Mol Res 11:3696–3710

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomato-Genome-Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto E, Matsunaga H, Onogi A, Kajiya-Kanegae H, Minamikawa M, Suzuki A, Shirasawa K, Hirakawa H, Nunome T, Yamaguchi H, Miyatake K, Ohyama A, Iwata H, Fukuoka H (2016) A simulation-based breeding design that uses whole-genome prediction in tomato. Sci Rep 6:19454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Fukushima of NIVFS for her technical assistance. This work was supported by grants from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, DD-4020; Development of DNA markers for Horticultural Crop Breeding, SGE1002; Genomics-based Technology for Agricultural Improvement, NGB2005 and NGB2010), and by Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), “Technologies for creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akio Ohyama or Takeshi Hayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Emilio A Carbonell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohyama, A., Shirasawa, K., Matsunaga, H. et al. Bayesian QTL mapping using genome-wide SSR markers and segregating population derived from a cross of two commercial F1 hybrids of tomato. Theor Appl Genet 130, 1601–1616 (2017). https://doi.org/10.1007/s00122-017-2913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2913-5

Keywords

Navigation