Skip to main content
Log in

Discovery and introgression of the wild sunflower-derived novel downy mildew resistance gene Pl 19 in confection sunflower (Helianthus annuus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albourie JM, Tourvieille J, Tourvieille De Labrouhe D (1998) Resistance to metalaxyl in isolates of the sunflower pathogen Plasmopara halstedii. European J Plant Pathol 104:2335–2342

    Article  Google Scholar 

  • Bachlava E, Radwan OE, Abratti G, Tang S, Gao W, Heesacker AF, Bazzalo ME, Zambelli A, Leon AJ, Knapp SJ (2011) Downy mildew (Pl 8 and Pl 14 ) and rust (R Adv ) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13. Theor Appl Genet 122:1211–1221

    Article  PubMed  Google Scholar 

  • Bouzidi MF, Badaoui S, Cambon F, Vear F, Tourvieille De Labrouhe D, Nicolas P, Mouzeyar S (2002) Molecular analysis of a major locus for resistance to downy mildew in sunflower with specific PCR-based markers. Theor Appl Genet 104:592–600

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ et al (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. Genes Genomes Genetics 2:721–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Lawrence GJ, Finnegan EJ, Anderson PA (1995) Contrasting complexity of two rust resistance loci in flax. Proc Natl Acad Sci USA 92:4185–4188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis JG, Lawrence GJ, Ayliffe M, Anderson P, Collins N, Finnegan J, Frost D, Luck J, Pryor T (1997) Advances in the molecular genetic analysis of the flax-flax rust interaction. Annu Rev Phytopathol 35:271–291

    Article  CAS  PubMed  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  CAS  PubMed  Google Scholar 

  • Fick GN, Zimmer DE (1974) RHA27, RHA273 and RHA274 sunflower parental lines for producing downy mildew resistant hybrids. Available: http://www.lib.ndsu.nodak.edu/repository/bitstream/handle/10365/9694/farm_32_02_02.pdf?sequence=1

  • Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jagas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Bol Skr 55:343–374

    Google Scholar 

  • Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, Godiard L (2015) The sunflower downy mildew pathogen Plasmopara halstedii. Mol Plant Path 16:109–122

    Article  Google Scholar 

  • Gilley MA, Markell SG, Gulya TJ, Misar CG (2016) Prevalence and virulence of Plasmopara halstedii (downy mildew) in sunflowers. Available at http://www.sunflowernsa.com/uploads/research/1277/Prevalence.Downey_Gilley.etal_2016.rev.pdf

  • Gulya TJ (2005) Evaluation of wild annual Helianthus species for resistance to downy mildew and Sclerotinia stalk rot. In: Proceeding 27th sunflower research forum. Fargo ND, Jan 12–13, 2005 http://www.sunflowernsa.com/uploads/research/265/Gulya_WildHelianthus_studies_05.pdf

  • Gulya TJ, Draper M, Harbour J, Holen C, Knodel J, Lamey A, Mason P (1999) Metalaxyl resistance in sunflower downy mildew in North America. In: Proceedings of 21st sunflower research workshop. Fargo, ND, Jan 14–15, 1999. pp. 118–123

  • Gulya TJ, Markell S, McMullen M, Harveson B, Osborne L (2011) New virulent races of downy mildew: distribution, status of DM resistant hybrids, and USDA sources of resistance. In: Proceedings of 33th Sunflower Research Forum. Fargo, ND, Jan 12–13, 2011. https://www.sunflowernsa.com/uploads/resources/575/gulya_virulentracesdownymildew.pdf

  • Gulya T, Kandel H, McMullen M, Berglund D, Mathew F, Lamey H, Nowatzki J, Markell S (2013) Prevalence and incidence of sunflower downy mildew in North Dakota between 2001 and 2011. Plant Health Progress. doi:10.1094/PHP2013-022-01-RS

    Google Scholar 

  • Harveson R, Markell S, Block C, Gulya T (2016) Compendium of sunflower diseases. American Phytopathology Press, St Paul. p. 40

    Google Scholar 

  • Hladni N (2016) Present status and future prospects of global confectionary sunflower production. In: Proceedings of 19th international sunflower conference. Edirne, Turkey, May 29–June 3, 2016. pp. 47–60

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Ann Rev Phytopathol 39:285–312

    Article  CAS  Google Scholar 

  • Hulke BS, Miller JF, Gulya TJ, Vick BA (2010) Registration of the oilseed sunflower genetic stocks HA 458, HA 459, and HA 460 possessing genes for resistance to downy mildew. J Plant Reg 4:93–97

    Article  Google Scholar 

  • Hulke BS, Grassa CJ, Bowers JE, Burke JM, Qi LL, Talukder ZI, Rieseberg LH (2015) A unified single nucleotide polymorphism map of sunflower (Helianthus annuus L.) derived from current genomic resources. Crop Sci 55:1696–1702

    Article  CAS  Google Scholar 

  • Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDC (1993) Two complex resistance loci revealed on tomato by classical and RFLP mapping of Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant-Microbe Interac 6:348–357

    Article  CAS  Google Scholar 

  • Jorgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Article  Google Scholar 

  • Kaloshian I, Lange WH, Williamson VM (1995) An aphid-resistance locus is tightly linked to the nematode-resistance gene Mi in tomato. Proc Natl Acad Sci 92:622–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantar MB, Sosa CC, Khoury CK, Castañeda-Álvarez NP, Achicanoy HA, Bernau V, Kane NC, Marek L, Seiler G, Rieseberg LH (2015) Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L). Frontiers in Plant Science 6:841

    Article  PubMed  PubMed Central  Google Scholar 

  • Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel BN (1996) A useful weed put to work-genetic analysis of disease resistance in Arabidopsis thaliana. Trends Gene 12:63–69

    Article  CAS  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Gulya TJ, Seiler GJ, Vick BA, Jan CC (2012) Molecular mapping of the Pl 16 downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. Theor Appl Genet 125:121–131

    Article  CAS  PubMed  Google Scholar 

  • Markell SG, Harveson RM, Block CC, Gulya TJ (2015) Sunflower diseases. In: Martínez-Force E, Dunford NT, Salas JJ (eds) Sunflower: chemistry, production, processing and utilization. AOCS Press, Urbana, p 730

    Google Scholar 

  • Michelmore RW, Meyers BC (1998) Cluster of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JF, Gulya TJ (1987) Inheritance of resistance to race three downy mildew in sunflower. Crop Sci 27:210–212

    Article  Google Scholar 

  • Miller JF, Gulya TJ (1988) Registration of six downy mildew resistant sunflower germplasm lines. Crop Sci 28:1040–1041

    Article  Google Scholar 

  • Miller JF, Gulya TJ (1991) Inheritance of resistance to race four of downy mildew derived from interspecific crosses in sunflower. Crop Sci 31:40–43

    Article  Google Scholar 

  • Mulpuri S, Liu Z, Feng J, Gulya TJ, Jan CC (2009) Inheritance and molecular mapping of a downy mildew resistance gene, Pl 13 in cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 119:795–803

    Article  CAS  PubMed  Google Scholar 

  • National Sunflower Association (2011) Confection sunflower update. http://www.sunflowernsa.com/magazine/articles/default.aspx?ArticleID=3362

  • Nishimura M (1922) Study in Plasmopara halstedii. J Coll Agric Hokkaido Imp Univ XI 3:185–210

    Google Scholar 

  • Novotelnova NS (1960) Biological characteristics of Plasmopara halstedii (Farl.) Berl. Et de Toni on sunflower. Botan Zhur 45:1283–1300 (In Russian)

    Google Scholar 

  • Qi LL, Seiler GJ (2016) Registration of an oilseed sunflower germplasm HA-DM1 resistant to sunflower downy mildew. Journal of Plant Registrations. 10:195–199

    Article  Google Scholar 

  • Qi LL, Gulya TJ, Seiler GJ, Hulke BS, Vick BA (2011) Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathol 101:241–249

    Article  CAS  Google Scholar 

  • Qi LL, Long YM, Jan CC, Ma GJ, Gulya TJ (2015) Pl 17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 128:757–767

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Foley ME, Cai XW, Gulya TJ (2016) Genetics and mapping of a novel downy mildew resistance gene, Pl 18 , introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 129:741–752

    Article  CAS  PubMed  Google Scholar 

  • Rahim M, Jan CC, Gulya TJ (2002) Inheritance of resistance to sunflower downy mildew races 1, 2 and 3 in cultivated sunflower. Plant Breed 121:57–60

    Article  Google Scholar 

  • Rogers CE, Thompson TE, Seiler GJ (1982) Sunflower species of the United States. National Sunflower Association, Bismarck, pp 4–22

    Google Scholar 

  • Sanz-Alferez S, Richter TE, Hulbert SH, Bennetzen JL (1995) The Rp3 disease resistance locus of maize: mapping and characterization of introgressed alleles. Theor Appl Genet 91:25–32

    Article  CAS  PubMed  Google Scholar 

  • Schilling EE (2006) Helianthus. Flora of North America Committee. Oxford University Press, New York, pp 141–169

    Google Scholar 

  • See DR, Brooks SA, Nelson JC, Brown-Guedira GL, Friebe B, Gill BS (2006) Gene evolution at the ends of wheat chromosomes. Proc Natl Acad Sci USA 103:4162–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler GJ (1991) Registration of 13 downy mildew tolerant interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1714–1716

    Google Scholar 

  • Seiler GJ (2010) Utilization of wild Heliathus species in breed for disease resistance. In: Proceedings of the international symposium “sunflower breeding on resistance to diseases”, Krasnodar, Russia. International Sunflower Association, Paris, France. June 23–24, 2010. pp 37–51

  • Seiler GJ, Jan CC (2010) Basic information. In: Hu J, Seiler G (eds) Genetics, genomics and breeding of sunflower. Science Publishers, Enfield, pp 1–50

    Chapter  Google Scholar 

  • Seiler GJ, Marek LF (2014) USDA-ARS sunflower germplasm collections. http://www.sunflowernsa.com/uploads/20/usda.ars.germplasm_seiler_2014.pdf

  • Slabaugh MB, Yu JK, Tang SX, Heesacker A, Hu X, Lu GH, Bidney D, Han F, Knapp SJ (2003) Haplotyping and mapping a large cluster of downy mildew resistance gene candidates in sunflower using multilocus intron fragment length polymorphisms. Plant Biotechnol J 1:167–185

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauguet C, Ronald PC (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Pi LY, Wang GL, Gardner J, Holsten T, Ronald PC (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins JC, Winchell CJ, Constable JVH (2013) Helianthus winteri (Asteraceae), a new perennial species from the southern Sierra Nevad a foothills, California. Aliso 31:19–24. doi:10.5642/aliso.20133101.04

    Article  Google Scholar 

  • Takken FL, Tomas CM, Joosten MH, Golstein C, Westerink N, Hille J, Nijkamp HJ, De Wit PJ, Jones JDJ (1999) A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J 20:279–288

    Article  CAS  PubMed  Google Scholar 

  • Talukder ZI, Gong L, Hulke BS, Pegadaraju V, Song QJ, Schultz Q, Qi LL (2014) A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R 12 . PLoS ONE 9(7):e98628. doi:10.1371/journal.pone.0098628

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap ® 4—Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Vear F, Seriveys H, Petit A, Serre F, Boudon JP, Roche S, Walser P, Tourvieille De Labrouhe D (2008) Origins of major genes for downy mildew resistance in sunflower. In: Proceedings of 17th international sunflower conference cordoba, Spain. Consejeria de Agricultura y Pesca. pp 125–130

  • Viranyi F, Gulya TJ, Tourieille DL (2015) Recent changes in the pathogenic variability of Plasmopara halstedii (sunflower downy mildew) populations from different continents. Helia. doi:10.1515/helia-2015-000938:149-162

    Google Scholar 

  • Wang GL, Ruan DL, Song WY, Sideris S, Chen LL, Pi LY, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Gobelman-Werner K, Morrol SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Wong RA, Wise RP (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14:1903–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieckhorst S, Bachlava E, Dußle CM, Tang S, Gao W, Saski C, Knapp SJ, Schön CC, Hahn V, Bauer E (2010) Fine mapping of the sunflower resistance locus Pl ARG introduced from the wild species Helianthus argophyllus. Theor Appl Genet 121:1633–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahiaoui N, Srichumpa P, Duadler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Kaur N, Keller B (2009) Independent evolution of functional Pm3 resistance gens in wild tetraploid wheat and domesticated bread wheat. Plant J 57:846–856

    Article  CAS  PubMed  Google Scholar 

  • Young PA, Morris HE (1927) Plasmopara downy mildew of cultivated sunflower. Am J Bot 14:551–558

    Article  Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G et al (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387

    Article  CAS  Google Scholar 

  • Zhou B, Dolan M, Sakai H, Wang WL (2007) The genomic dynamics and evolutionary mechanism of Pi2/9 locus in rice. Mol Plant-Microbe Interac 20:63–71

    Article  CAS  Google Scholar 

  • Zimmer DE (1974) Physiological specialization between races of Plasmopara halstedii in America and Europe. Phytopathol 64:1465–1467

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Loren Rieseberg for providing access to the Sunflower Genome Data Repository. We also thank Drs. Zhao Liu and Steven Xu for critical review of the manuscript, Angelia Hogness for technical assistance, and Michelle Gilley for providing some downy mildew isolates of different races. ZWZ was supported by China Scholarship Council. This project was supported by the USDA-ARS CRIS Project No. 3060-21000-039-00D, and the USDA-AMS Specialty Crop Block Grant Program 14-SCBGP-ND-0038. Mention of trade names or commercial products in this report is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments were performed in compliance with the current laws of the USA.

Additional information

Communicated by V. Hahn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z.W., Ma, G.J., Zhao, J. et al. Discovery and introgression of the wild sunflower-derived novel downy mildew resistance gene Pl 19 in confection sunflower (Helianthus annuus L.). Theor Appl Genet 130, 29–39 (2017). https://doi.org/10.1007/s00122-016-2786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2786-z

Keywords

Navigation