Skip to main content
Log in

Bandwagons I, too, have known

  • Opinion Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Bandwagons come in waves. A plant breeder, just like a surfer, needs to carefully choose which waves to be on.

Abstract

A bandwagon is an idea, activity, or cause that becomes increasingly fashionable as more and more people adopt it. In a 1991 article entitled Bandwagons I Have Known, Professor N. W. Simmonds described several bandwagons that he encountered in his career, beginning with induced polyploidy and mutation breeding and ending with the then-new field of biotechnology. This article reviews and speculates about post-1990 bandwagons in plant improvement, including transgenic cultivars, quantitative trait locus (QTL) mapping, association mapping, genomewide (or genomic) selection, phenomics, envirotyping, and genome editing. The life cycle of a bandwagon includes an excitement phase of hype and funding; a realization phase when the initial hype is either tempered or the initial expectations are found to have been too low; and a reality phase when the useful aspects of a bandwagon become part of mainstream thinking and practice, or when an unsuccessful bandwagon is largely abandoned. During the realization phase, a new bandwagon that draws our attention and gives us renewed optimism typically arises. The most popular bandwagons, such as QTL mapping, are those for which the needed experimental resources are accessible, the required technical knowledge and skills can be easily learned, and the outputs can almost always be reported. The favorite bandwagon of any plant breeder has, in one way or another, resulted from Mendel’s seminal discoveries 150 years ago. Our community of plant breeders needs to be continually diligent in welcoming new bandwagons, but also in hopping off from those that do not prove useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön C-C (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Anderson JA, Chao S, Liu S (2008) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47:S112–S119

    Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132–144

    Article  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Tinker NA, Jannink J-L (2013) Comparison of genomic, marker-assisted, and pedigree-BLUP selection methods to increase ß-glucan concentration in elite oat germplasm. Crop Sci 53:1894–1906

    Article  CAS  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies, pp 250–266. In: Proc Corn Sorghum Ind Res Conf, 7–8 Dec 1994, Chicago, Illinois. Am Seed Trade Assoc, Washington, DC

  • Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Soller M (1986) Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35:111–124

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R (2013) Genomewide markers for controlling background variation in association mapping. Plant Genome. doi:10.3835/plantgenome2012.11.0028

    Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Article  Google Scholar 

  • Brannigan A, Wanner RA, White JM (1981) The phenomenon of multiple discoveries and the re-publication of Mendel’s work in 1900. Phil Social Sci 11:263–276

    Article  Google Scholar 

  • Broertjes C (1966) Mutation breeding of chrysanthemums. Euphytica 15:156–162

    Article  CAS  Google Scholar 

  • Combs E, Bernardo R (2013) Genomewide selection to introgress semidwarf corn germplasm into U.S. Corn Belt inbreds. Crop Sci 53:1427–1436

    Article  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336

    Article  CAS  Google Scholar 

  • Corcos AF, Monaghan FV (1990) Mendel’s work and its rediscovery: a new perspective. Crit Rev Plant Sci 9:197–212

    Article  Google Scholar 

  • Crabb AR (1947) The hybrid-corn makers: prophets of plenty. Rutgers Univ Press, New Brunswick

    Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395. doi:10.1371/journal.pone.0003395

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards MD, Helentjaris T, Wright S, Stuber CW (1992) Molecular-marker-facilitated investigations of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet 83:765–774

    CAS  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Tucker D, Lu J, Kishore V, Gay G (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124:261–275

    Article  PubMed  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames, Iowa, USA

  • Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Horner TA, Dively GP, Herbert DA (2003) Development, survival and fitness performance of Helicoverpa zea (Lepidoptera: Noctuidae) in MON810 Bt field corn. J Econ Entomol 96:914–924

    Article  CAS  PubMed  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM Crops: 2007. ISAAA Brief No. 37. International Service for the Acquisition of Agri-biotech Applications, Ithaca, New York

  • James C (2014) Global status of commercialized biotech/GM Crops: 2014. ISAAA Brief No. 49. International Service for the Acquisition of Agri-biotech Applications, Ithaca, New York

  • Lande R, Thompson EA (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lian L, Jacobson A, Zhong S, Bernardo R (2014) Genomewide prediction accuracy within 969 maize biparental populations. Crop Sci 54:1514–1522

    Article  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Massman JM, Jung H-JG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan F, Corcos A (1986) Tschermak: a non-discoverer of Mendelism. I. An historical note. J Hered 77:468–469

    CAS  PubMed  Google Scholar 

  • Moore R (2001) The ‘‘rediscovery’’ of Mendel’s work. Bioscene 27:13–24

    Google Scholar 

  • Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in maize. Theor Appl Genet 109:508–514

    Article  CAS  PubMed  Google Scholar 

  • Platt R (1959) Mendel, Darwin and Galton. Med Hist 3:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RS, Coors JG, Sussman MR, Gabelman WH (1991) Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theor Appl Genet 82:561–568

    Article  CAS  PubMed  Google Scholar 

  • Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink J-L, Sorrells ME (2015) Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome. doi:10.3835/plantgenome2014.10.0074

    Google Scholar 

  • Schaefer CM, Bernardo R (2013) Genomewide association mapping of flowering time, kernel composition, and disease resistance in historical Minnesota maize inbreds. Crop Sci 53:2518–2529

    Article  Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Karaman Z, Knaak C, Piepho H-P (2012) Genomic selection using multiple populations. Crop Sci 52:2453–2461

    Article  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  Google Scholar 

  • Shull GH (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis. Iowa State College Press, Ames, pp 14–48

    Google Scholar 

  • Smith JSC, Hussain T, Jones ES, Graham G, Podlich D, Wall S, Williams M (2008) Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops. Mol Breed 22:51–59

    Article  Google Scholar 

  • Stomps J (1954) On the rediscovery of Mendel’s work by Hugo de Vries. J Hered 45:293–294

    Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson PH, Baker RZ, Smallwood N (1986) Improving professional development by applying the four-stage career model. Org Dyn 15:49–62

    Article  Google Scholar 

  • Veldboom LR, Lee M (1994) Molecular-marker-facilitated studies of morphological traits in maize. II: determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131

    Article  CAS  PubMed  Google Scholar 

  • Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One. doi:10.1371/journal.pone.0029229

    Google Scholar 

  • White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang G (2012) Field-based phenomics for plant genetics research. Field Crops Res 133:101–112

    Article  Google Scholar 

  • Xiong J-S, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hort Res 2:15019. doi:10.1038/hortres.2015.19

    Article  Google Scholar 

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Warburton M, Crouch J (2010) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Zhang X, Sallam A, Gao L, Kantarski T, Poland J, DeHaan LR, Wyse DL, Anderson JA (2016) Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome. doi:10.3835/plantgenome2015.07.005

    Google Scholar 

  • Zheng S, Byrne PF, Bai G, Shan X, Reid SD, Haley SD, Seabourn BW (2009) Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough-mixing properties. J Cereal Sci 50:283–290

    Article  CAS  Google Scholar 

  • Zhenhua P, Shouhe J (1995) New Chrysanthemum varieties developed by radiation breeding and micropropagation. Acta Hortic 404:128–130

    Article  Google Scholar 

  • Zirkle C (1964) Some oddities in the delayed discovery of Mendelism. J Hered 55:65–72

    Google Scholar 

Download references

Acknowledgments

I thank Mark Cooper (DuPont Pioneer) for encouraging me to write this article and for suggesting the title; John Snape (John Innes Centre) and Brenda Bautista Perez (CIMMYT) for sending me a copy of the Simmonds Bandwagons article when I could not find my old copy; and Paul Harding of the Tropical Agriculture Association for permission to include the Simmonds article as electronic supplementary material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex Bernardo.

Additional information

Communicated by H. Bürstmayr and J. Vollmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardo, R. Bandwagons I, too, have known. Theor Appl Genet 129, 2323–2332 (2016). https://doi.org/10.1007/s00122-016-2772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2772-5

Keywords

Navigation