Skip to main content

From Genes to Markers: Exploiting Gene Sequence Information to Develop Tools for Plant Breeding

  • Protocol
  • First Online:
Crop Breeding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1145))

Abstract

Once the sequence is known for a gene of interest, it is usually possible to design markers to detect polymorphisms within the gene. Such markers can be particularly useful in plant breeding, especially if they detect the causal polymorphism within the gene and are diagnostic of the phenotype. In this chapter, we (1) discuss how gene sequences are obtained and aligned and how polymorphic sites can be identified or predicted; (2) explain the principles of PCR primer design and PCR amplification and provide guidelines for their application in the design and testing of markers; (3) discuss detection methods for presence/absence (dominant) polymorphisms, length polymorphisms and single nucleotide polymorphisms (SNPs); and (4) outline some of the factors that affect the utility of markers in plant breeding and explain how markers can be evaluated (validated) for use in plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  2. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  3. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  4. Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Tanksley SD, Young ND, Paterson AH et al (1989) RFLP mapping in plant breeding: new tools for an old science. Nature 7:257–264

    CAS  Google Scholar 

  6. Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  7. Konieczny F, Ausubel A (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  8. Baumbusch LO, Sundal INAK, Hughes DW et al (2001) Efficient protocols for CAPS-based mapping in Arabidopsis. Plant Mol Biol Rep 19:137–149

    Article  CAS  Google Scholar 

  9. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  10. Holland JB, Helland SJ, Sharopova N et al (2001) Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44:1065–1076

    Article  CAS  PubMed  Google Scholar 

  11. Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:398–401

    Google Scholar 

  14. Li Y-C, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  15. Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    Article  CAS  PubMed  Google Scholar 

  16. Temnykh S, DeClerck G, Lukashova A et al (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  18. Paux E, Faure S, Choulet F et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    Article  CAS  PubMed  Google Scholar 

  19. Larkin HD, Blackshields MA, Brown G et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  20. Katoh M, Kuma M (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Marth GT, Korf I, Yandell MD et al (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23:452–456

    Article  CAS  PubMed  Google Scholar 

  22. Barker G, Batley J, O’ Sullivan H et al (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422

    Article  CAS  PubMed  Google Scholar 

  23. Apte A, Daniel S (2009) PCR primer design. Cold Spring Harb Protoc. doi:10.1101/pdb.ip65

    PubMed  Google Scholar 

  24. Dieffenbach GS, Dveksler CW (1995) PCR primer: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  25. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  26. Untergasser LJ, Nijveen A, Rao H et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  28. Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  29. Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kolmodin LA, Birch DE (2002) Polymerase chain reaction: basic principles and routine practice. In: Chen BY, Janes HW (eds) PCR cloning protocols. Humana Press, Totowa, NJ, pp 3–18

    Chapter  Google Scholar 

  31. Eckert KA, Kunkel TA (1991) DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl 1:17–24

    Article  CAS  PubMed  Google Scholar 

  32. Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008–6013

    Article  CAS  PubMed  Google Scholar 

  33. Don RH, Cox PT, Wainwright BJ et al (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Henegariu O, Heerema NA, Dlouhy SR et al (1997) Multiplex PCR : critical parameters and step-by-step protocol. Biotechniques 23: 504–511

    CAS  PubMed  Google Scholar 

  35. Hayden MJ, Nguyen TM, Waterman A et al (2007) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281

    Article  Google Scholar 

  36. Wittwer CT, Reed GH, Gundry CN et al (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  CAS  PubMed  Google Scholar 

  37. Herrmann H, Durtschi J, Wittwer C et al (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53: 1544–1548

    Article  CAS  PubMed  Google Scholar 

  38. Tabone T, Mather DE, Hayden MJ (2009) Temperature switch PCR (TSP): Robust assay design for reliable amplification and genotyping of SNPs. BMC Genomics 10:580

    Article  PubMed Central  PubMed  Google Scholar 

  39. Studer B, Jensen LB, Fiil A et al (2009) “Blind” mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis. Mol Breed 24: 191–199

    Article  CAS  Google Scholar 

  40. Dong C, Vincent K, Sharp P (2009) Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®. BMC Plant Biol 9:143

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lee LG, Connell CR, Bloch W et al (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21: 3761–3766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Holland PM, Abramson RD, Watson R et al (1991) Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88: 7276–7280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bagge M, Lübberstedt T (2008) Functional markers in wheat: technical and economic aspects. Mol Breed 22:319–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Garcia, M., Mather, D.E. (2014). From Genes to Markers: Exploiting Gene Sequence Information to Develop Tools for Plant Breeding. In: Fleury, D., Whitford, R. (eds) Crop Breeding. Methods in Molecular Biology, vol 1145. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0446-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0446-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0445-7

  • Online ISBN: 978-1-4939-0446-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics