Skip to main content
Log in

Genetic mapping of QTL for maize weevil resistance in a RIL population of tropical maize

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A tropical RIL maize population was subjected to phenotypic and genotypic analysis for maize weevil resistance during four seasons, and three main genomic areas were detected as main QTLs.

Abstract

The maize weevil (Sitophilus zeamais) (MW) is a common and important pest of stored maize (Zea mays) worldwide, especially in tropical areas. Quantitative trait loci (QTLs) associated with the MW have been analyzed previously in an F2 maize population. In this work, new germplasm-based F6 recombinant inbred line (RIL) families, derived from the cross of Population 84 and Kilima, were analyzed using insect bioassays during four seasons. The parameters analyzed for MW resistance were grain weight losses (GWL), adult progeny (AP), and flour production (FP). Composite interval mapping identified a total of 15 QTLs for MW parameters located on six chromosomes, explaining between 14 and 51 % of phenotypic variation (σ 2p ) and 27 and 81 % of genotypic variation (σ 2g ). The QTL obtained for GWL was located in bin 2.05, which explained 15 % of σ 2p . For AP and FP, the QTLs were located on regions 1.09 and 2.05, explaining 7 and 15 % of σ 2p , respectively. Comparative analysis between F2 and F6 families showed similarities in QTL localization; three main regions were co-localized in chromosomes 4.08, 10.04, and 10.07, where no resistance-associated genes have been reported previously. These regions could be used for a marker-assisted selection in breeding programs for MW resistance in tropical maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GWL:

Grain weight losses

FP:

Flour production

AP:

Adult progeny

MW:

Maize weevil

QTL:

Quantitative trait locus

RIL:

Recombinant inbred line

References

  • Arnason J, Baum B, Gale J, Lambert J, Bergvinson D, Philogene B, Serratos J, Mihm J, Jewell D (1994) Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica 74:227–236

    Article  Google Scholar 

  • Ayala-Soto FE, Serna-Saldívar SO, García-Lara S, Pérez-Carrillo E (2014) Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources. Food Hydrocolloids 35:471–475

    Article  CAS  Google Scholar 

  • Barrière Y, Méchin V, Lefevre B, Maltese S (2012) QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line. Theor Appl Genet 125:531–549

    Article  PubMed  Google Scholar 

  • Bergvinson DJ, García-Lara S (2006) Consensus mapping for field and storage pest resistance in tropical maize. In: Higman S (ed) International plant breeding symposium, Mexico City, 20–25 Aug, 2006, CIMMYT, Mexico, DF

  • Bergvinson DJ, García-Lara S (2011) Synergistic effects of insect-resistant maize and Teretrius nigrescens on the reduction of grain losses caused by Prostephanus truncatus (Horn.) J Stored Prod Res 47:95–100

    Article  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodburn, MN

    Google Scholar 

  • Bohn M, Khairallah MM, Jiang C, González-de-León D, Hoisington DA, Utz HF, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE (1997) QTL mapping in tropical maize: II. Comparison of genomic regions for resistance to Diatraea spp. Crop Sci 37:1892–1902

    Article  CAS  Google Scholar 

  • CIMMYT (2005) Laboratory protocols: CIMMYT Applied Molecular Genetics Laboratory, 3rd edn. CIMMYT, Mexico, DF

    Google Scholar 

  • Courtial A, Thomas J, Reymond M, Méchin V, Grima-Pettenati J, Yves Barrière (2013) Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. Theor Appl Genet 126:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Davis G, McMullen M, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe E (1999) A maize map standard with sequenced core markers grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetic 152:1137–1172

    CAS  Google Scholar 

  • Dhliwayo T, Pixley K, Kazembe V (2005) Combining ability for resistance to maize weevil among 14 southern African maize inbred lines. J Agri Crop Sci 45:662–667

    Article  Google Scholar 

  • Dhliwhayo T, Pixley K (2003) Divergent selection for resistance to maize weevil in six maize populations. J Agri Crop Sci 43:2043–2049

    Article  Google Scholar 

  • Dobie P (1977) The contribution of the Tropical Stored Products Center to the study of insect resistance in stored maize. Trop Stored Prod Inf 34:7–22

    Google Scholar 

  • García-Lara S, Bergvinson DJ (2007) Integral program to reduce postharvest losses in maize. Agricultura Técnica en México 33:181–189

    Google Scholar 

  • García-Lara S, Bergvinson DJ (2013) Identification of maize landraces with high resistance to the storage pests Sitophilus zeamais and Prostephanus truncates, in Latin America. Rev Fito Mex 36:347–356

    Google Scholar 

  • García-Lara S, Arnason JT, Díaz-Pontones D, Gonzalez E, Bergvinson DJ (2007) Soluble peroxidase activity in maize grain related with maize weevil resistance. Crop Sci 47:1126–1130

    Article  Google Scholar 

  • García-Lara S, Bergvinson DJ (2014) Phytochemical changes during recurrent selection for storage pest resistance in tropical maize. Crop Sci  54:1–10

  • García-Lara S, Bergvinson DJ, Burt A, Ramputh A, Díaz-Pontonez D, Arnason J (2004) The role of pericarp cell wall components in maize weevil resistance. Crop Sci 44:1546–1552

    Article  Google Scholar 

  • García-Lara S, Khairallah M, Mateo V, Bergvinson DJ (2009) Mapping of QTL associated with maize weevil resistance in tropical maize. Crop Sci 49:139–149

    Article  Google Scholar 

  • García-Lara S, Burt A, Arnason J, Bergvinson DJ (2010) QTL mapping of tropical maize grain components associated with maize weevil resistance. Crop Sci 50:1–11

    Article  Google Scholar 

  • Gardiner J, Coe E, Melia-Hancock S, Hoisington D, Chao S (1993) Development of a core RFLP map in maize using an immortalized-F2 population. Genetics 134:917–930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Groh S, González-de-León M, Khairallah C, Jiang D, Bergvinson DJ, Bohn M, Hoisington D, Melchinger A (1998) QTL mapping in tropical maize: III. Genomic regions for resistance to Diatraea spp. and associated traits in two RIL population. Crop Sci 38:1062–1072

    Article  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State Univ. Press, Ames

    Google Scholar 

  • Hazen SP, Hawley RM, Davis GL, Henrissat B, Walton DJ (2003) Quantitative trait loci and comparative genomics of cereal cell wall composition. Plant Physiol 132:263–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, González-de-León D (1994) Laboratory protocols: CIMMYT, Applied Molecular Genetics Laboratory, 3rd edn. CIMMYT, Mexico

    Google Scholar 

  • Jansen R, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang C, Zeng Z (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khairallah M, Bohn M, Jiang C, Deutsch J, Jewell D, Mihm J, Melchinger A, González-de-León D, Hoisington D (1998) Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed 117:309–318

    Article  Google Scholar 

  • Kumar H (2002) Resistance in maize to the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J Stored Prod Res 38:267–280

    Article  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage map of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Mansur L, Orf J, Lark K (1993) Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean (Glycine max L. Merr.). Theor Appl Genet 86:914–918

    CAS  PubMed  Google Scholar 

  • McMullen M, Frey M, Degernhardt J (2009) Genetics and biochemistry of insect resistance in maize. In: Bennetzen JA (ed) Handbook of maize: it’s biology. Springer, New York, pp 271–289

    Chapter  Google Scholar 

  • Meihls L, Kaur H, Jander G (2012) Natural variation in maize defense against insect herbivores. Cold Spring Harb Symp Quant Biol 77:269–283

    Article  CAS  PubMed  Google Scholar 

  • Ordas B, Malvar R, Santiago R, Sandoya G, Romay M, Butron A (2009) Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 3 Mo17 (IBM) population of maize. Theor Appl Genet 119:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Pingali P, Pandey S (2001). World maize needs meeting: technological opportunities and priorities of the public sector. World maize facts and trends: meeting world maize needs. CIMMYT, Mexico

  • Santiago R, Barros-Rios J, Malvar R (2013) Impact of cell wall composition on maize resistance to pests and diseases. Int J Mol Sci 14:6960–6980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takuno S, Terauchi R, Innan H (2012) The power of QTL mapping with RILs. PLoS ONE 7:1–10

    Article  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CABI International, México, DF

    Book  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Consejo Nacional de Ciencia y Tecnologia, CONACYT-Mexico, by Research Funds of Basic Science (CB-2009-01-000000000134238) and CIMMYT, Research Funds.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silverio García-Lara.

Additional information

Communicated by Thomas Lubberstedt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Álvarez, F.F., William, M., Bergvinson, D.J. et al. Genetic mapping of QTL for maize weevil resistance in a RIL population of tropical maize. Theor Appl Genet 128, 411–419 (2015). https://doi.org/10.1007/s00122-014-2440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2440-6

Keywords

Navigation