Skip to main content
Log in

Next generation genetic mapping of the Ligon-lintless-2 (Li 2) locus in upland cotton (Gossypium hirsutum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Mapping-by-sequencing and novel subgenome-specific SNP markers were used to fine map the Ligon-lintless 2 ( Li 2 ) short-fiber gene in tetraploid cotton. These methodologies will accelerate gene identification in polyploid species.

Abstract

Next generation sequencing offers new ways to identify the genetic mechanisms that underlie mutant phenotypes. The release of a reference diploid Gossypium raimondii (D5) genome and bioinformatics tools to sort tetraploid reads into subgenomes has brought cotton genetic mapping into the genomics era. We used multiple high-throughput sequencing approaches to identify the relevant region of reference sequence and identify single nucleotide polymorphisms (SNPs) near the short-fiber mutant Ligon-lintless 2 (Li 2) gene locus. First, we performed RNAseq on 8-day post-anthesis (DPA) fiber cells from the Li 2 mutant and its wild type near isogenic line (NIL) Gossypium hirsutum cv. DP5690. We aligned sequence reads to the D5 genome, sorted the reads into A and D subgenomes with PolyCat and called SNPs with InterSNP. We then identified SNPs that would result in non-synonymous substitutions to amino acid sequences of annotated genes. This step allowed us to identify a 1-Mb region with 24 non-synonymous SNPs, representing the introgressed region that differentiates Li 2 from its NIL. Next, we sequenced total DNA from pools of F2 plants, using a super bulked segregant analysis sequencing (sBSAseq) approach. The sBSAseq predicted 82 non-synonymous SNPs among 3,494 SNPs in a 3-Mb region that includes the region identified by RNAseq. We designed subgenome-specific SNP markers and tested them in an F2 population of 1,733 individuals to construct a genetic map. Our resulting genetic interval contains only one gene, an aquaporin, which is highly expressed in wild-type fibers and is significantly under-expressed in elongating Li 2 fiber cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Birkeland SR, Jin N, Ozdemir AC, Lyons RH, Weisman LS, Wilson TE (2010) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 186:1127–1137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blake N, Sherman J, Dvořák J, Talbert L (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Blenda A, Fang DD, Rami J-F, Garsmeur O, Luo F, Lacape J-M (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7:e45739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blumenstiel JP, Noll AC, Griffiths JA, Perera AG, Walton KN, Gilliland WD, Hawley RS, Staehling-Hampton K (2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 182:25–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201–1214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H, Liu S (2010) Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theor Appl Genet 120:1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary B, Hovav R, Flagel L, Mittler R, Wendel JF (2009) Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium). BMC Genom 10:378

    Article  Google Scholar 

  • Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594–597

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120:943–953

    Article  PubMed  CAS  Google Scholar 

  • Galvão VC, Nordström KJ, Lanz C, Sulz P, Mathieu J, Posé D, Schmid M, Weigel D, Schneeberger K (2012) Synteny-based mapping-by-sequencing enabled by targeted enrichment. Plant J 71:517–526

    PubMed  Google Scholar 

  • Guenther CA, Tasic B, Luo L, Bedell MA, Kingsley DM (2014) A molecular basis for classic blond hair color in Europeans. Nat Genet

  • Hinchliffe DJ, Turley RB, Naoumkina M, Kim HJ, Tang Y, Yeater KM, Li P, Fang DD (2011) A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.). BMC Genom 12:445

    Article  Google Scholar 

  • Karlsson M, Johansson I, Bush M, McCann MC, Maurel C, Larsson C, Kjellbom P (2000) An abundant TIP expressed in mature highly vacuolated cells. Plant J 21:83–90

    Article  PubMed  CAS  Google Scholar 

  • Kiełbowicz-Matuk A (2012) Involvement of plant C2H2  -type zinc finger transcription factors in stress responses. Plant Sci 185:78–85

    Article  PubMed  Google Scholar 

  • Kohel R, Stelly D, Yu J (2002) Tests of six cotton (Gossypium hirsutum L.) mutants for association with aneuploids. J Hered 93:130–132

    Article  PubMed  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  • Li DD, Ruan XM, Zhang J, Wu YJ, Wang XL, Li XB (2013) Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol 199:695–707

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2 , H2O2, and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu D, Tu L, Wang L, Li Y, Zhu L, Zhang X (2008) Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep 27:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • Long Y, Wang Z, Sun Z, Fernando DW, McVetty PB, Li G (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘Surpass 400’. Theor Appl Genet 122:1223–1231

    Article  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88:9828–9832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Naoumkina M, Hinchliffe DJ, Turley RB, Bland JM, Fang DD (2013) Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.). BMC Genom 14:155

    Article  CAS  Google Scholar 

  • Naoumkina M, Thyssen G, Fang DD, Hinchliffe DJ, Florane C, Yeater KM, Page JT, Udall JA (2014) The Li2 mutation results in reduced subgenome expression bias in elongating fibers of allotetraploid cotton (Gossypium hirsutum L.). PLoS One 9:e90830

    Article  PubMed  PubMed Central  Google Scholar 

  • Page JT, Gingle AR, Udall JA (2013) PolyCat: a resource for genome categorization of sequencing reads from allopolyploid organisms. G3: genes genomes. Genetics 3:517–525

    CAS  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  PubMed  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rong J, Pierce GJ, Waghmare VN, Rogers CJ, Desai A, Chee PW, May OL, Gannaway JR, Wendel JF, Wilkins TA (2005) Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet 111:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell Online 13:47–60

    CAS  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jørgensen J-E, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  PubMed  CAS  Google Scholar 

  • Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol 116:1539–1549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  PubMed  CAS  Google Scholar 

  • Taliercio EW, Boykin D (2007) Analysis of gene expression in cotton fiber initials. BMC Plant Biol 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Thyssen GN, Song X, Naoumkina M, Kim HJ, Fang DD (2014) Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.). Gene 544:41–48

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen J (2006) JoinMap 4 software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

    Google Scholar 

  • Wang Z, Zhang D, Wang X, Tan X, Guo H, Paterson AH (2013) A whole-genome DNA marker map for cotton based on the D-genome sequence of gossypium raimondii L. G3: genes genomes. Genetics 3:1759–1767

    CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6:e1000942

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R (2010) Mutation detection with next-generation resequencing through a mediator genome. PLoS One 5:e15628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zuryn S, Le Gras S, Jamet K, Jarriault S (2010) A strategy for direct mapping and identification of mutations by whole-genome sequencing. Genetics 186:427–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the USDA-ARS CRIS project # 6435-21000-0017D and Cotton Incorporated project # 12-210. We greatly appreciate the contributions of Dr. Xianliang Song in our group. We also appreciate Mrs. Sheron Simpson and Dr. Brian Scheffler at the Genomics and Bioinformatics Research Unit, USDA-ARS at Stoneville, MS, for their support in SSR marker analysis. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture that is an equal opportunity provider and employer.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Naoumkina.

Additional information

Communicated by Christiane Gebhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyssen, G.N., Fang, D.D., Turley, R.B. et al. Next generation genetic mapping of the Ligon-lintless-2 (Li 2) locus in upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127, 2183–2192 (2014). https://doi.org/10.1007/s00122-014-2372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2372-1

Keywords

Navigation