Skip to main content
Log in

Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Proof of concept of Bayesian integrated QTL analyses across pedigree-related families from breeding programs of an outbreeding species. Results include QTL confidence intervals, individuals’ genotype probabilities and genomic breeding values.

Abstract

Bayesian QTL linkage mapping approaches offer the flexibility to study multiple full sib families with known pedigrees simultaneously. Such a joint analysis increases the probability of detecting these quantitative trait loci (QTL) and provide insight of the magnitude of QTL across different genetic backgrounds. Here, we present an improved Bayesian multi-QTL pedigree-based approach on an outcrossing species using progenies with different (complex) genetic relationships. Different modeling assumptions were studied in the QTL analyses, i.e., the a priori expected number of QTL varied and polygenic effects were considered. The inferences include number of QTL, additive QTL effect sizes and supporting credible intervals, posterior probabilities of QTL genotypes for all individuals in the dataset, and QTL-based as well as genome-wide breeding values. All these features have been implemented in the FlexQTL software. We analyzed fruit firmness in a large apple dataset that comprised 1,347 individuals forming 27 full sib families and their known ancestral pedigrees, with genotypes for 87 SSR markers on 17 chromosomes. We report strong or positive evidence for 14 QTL for fruit firmness on eight chromosomes, validating our approach as several of these QTL were reported previously, though dispersed over a series of studies based on single mapping populations. Interpretation of linked QTL was possible via individuals’ QTL genotypes. The correlation between the genomic breeding values and phenotypes was on average 90 %, but varied with the number of detected QTL in a family. The detailed posterior knowledge on QTL of potential parents is critical for the efficiency of marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antofie A, Lateur M, Oger R, Patocchi A, Durel CE, Van de Weg WE (2007) A new versatile database created for geneticists and breeders to link molecular and phenotypic data in perennial crops: the AppleBreed database. Bioinformatics 23(7):882–891

    Article  PubMed  CAS  Google Scholar 

  • Bink MCAM, Van Arendonk JA (1999) Detection of quantitative trait loci in outbred populations with incomplete marker data. Genetics 151(1):409–420

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bink MCAM, Uimari P, Sillanpaa J, Janss LLG, Jansen RC (2002) Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet 104(5):751–762

    Article  PubMed  CAS  Google Scholar 

  • Bink MCAM, Anderson AD, van de Weg WE, Thompson EA (2008a) Comparison of marker-based pairwise relatedness estimators on a pedigreed plant population. Theor Appl Genet. doi:10.1007/s00122-008-0824-1

    PubMed  Google Scholar 

  • Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE, Weg WEVD (2008b) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161(1–2):85–96

    Article  Google Scholar 

  • Bink MCAM, Totir LR, ter Braak CJF, Winkler CR, Boer MP, Smith OS (2012) QTL linkage analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124(6):1097–1113. doi:10.1007/s00122-011-1772-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113(2):206–224

    Article  PubMed  CAS  Google Scholar 

  • Brooks SP, Giudici P, Philippe A (2003) Nonparametric convergence assessment for MCMC model selection. J Comput Graph Stat 12(1):1–22

    Article  Google Scholar 

  • Chagne D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7(2):e31745. doi:10.1371/journal.pone.0031745

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J Exp Bot 61(11):3029–3039. doi:10.1093/jxb/erq130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Costa F, Cappellin L, Fontanari M, Longhi S, Guerra W, Magnago P, Gasperi F, Biasioli F (2012) Texture dynamics during postharvest cold storage ripening in apple (Malus × domestica Borkh.). Postharvest Biol Technol 69:54–63. doi:10.1016/j.postharvbio.2012.03.003

    Article  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3 (10). doi:10.1371/journal.pone.0003395

  • Evans KM, Patocchi A, Rezzonico F, Mathis F, Durel CE, Fernández-Fernández F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Gianfranceschi L, Komjanc M, Lateur M, Madduri M, Noordijk Y, Weg WE (2011) Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed 28(4):535–547. doi:10.1007/s11032-010-9502-5

    Article  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics. Longman, Harlow

    Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111(4):658–664

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J, Le Paslier M-C, McMullen MD, Montalent P, Rose M, Schön C-C, Sun Q, Walter H, Martin OC, Falque M (2011) A large Maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6(12):e28334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):472–475. doi:10.1214/ss/1177011136

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. Texts in statistical science, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Genstat Committee (2004) Genstat Release 7.1: the guide to GenStat. VSN International Ltd, Oxford

    Google Scholar 

  • Gianfranceschi L, Soglio V (2004) The European project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Horticulturae 663:327–330

    Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Interdisciplinary statistics. Chapman & Hall, London

    Book  Google Scholar 

  • Habier D, Fernando R, Kizilkaya K, Garrick D (2011) Extension of the bayesian alphabet for genomic selection. BMC Bioinform 12(1):186

    Article  Google Scholar 

  • Hayes B, Goddard ME (2001) The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol 33(3):209–229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61(3):748–760

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang XQ, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci USA 108(11):4488–4493. doi:10.1073/pnas.1100465108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jannink JL, Wu XL (2003) Estimating allelic number and identity in state of QTLs in interconnected families. Genet Res 81(2):133–144

    PubMed  CAS  Google Scholar 

  • Jansen J, Boer MP, Bink MCAM, van de Weg WE (2009) Searching for interacting QTL in related populations of an outbreeding species. Euphytica 166(1):131–144. doi:10.1007/s10681-008-9849-4

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  Google Scholar 

  • Kenis K, Keulemans J, Davey M (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4(4):647–661

    Article  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens T, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100(7):1074–1084

    Article  Google Scholar 

  • Kouassi AB, Durel CE, Costa F, Tartarini S, van de Weg E, Evans K, Fernandez-Fernandez F, Govan C, Boudichevskaja A, Dunemann F, Antofie A, Lateur M, Stankiewicz-Kosyl M, Soska A, Tomala K, Lewandowski M, Rutkovski K, Zurawicz E, Guerra W, Laurens F (2009) Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes 5(4):659–672. doi:10.1007/s11295-009-0217-x

    Article  Google Scholar 

  • Kumar S, Bink MCAM, Volz RK, Bus VGM, Chagne D (2012) Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 8(1):1–14. doi:10.1007/s11295-011-0425-z

    Article  Google Scholar 

  • Lerceteau-Köhler E, Moing A, Guérin G, Renaud C, Petit A, Rothan C, Denoyes B (2012) Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control. Theor Appl Genet 124(6):1059–1077. doi:10.1007/s00122-011-1769-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52(3):511–526

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Maliepaard C, Sillanpaa MJ, van Ooijen JW, Jansen RC, Arjas E (2001) Bayesian versus frequentist analysis of multiple quantitative trait loci with an application to an outbred apple cross. Theor Appl Genet 103(8):1243–1253. doi:10.1007/s001220100720

    Article  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patocchi A, Fernandez-Fernandez F, Evans K, Gobbin D, Rezzonico F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Mathis-Jeanneteau F, Durel CE, Gianfranceschi L, Costa F, Toller C, Cova V, Mott D, Komjanc M, Barbaro E, Kodde L, Rikkerink E, Gessler C, van de Weg WE (2009) Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome. Tree Genet Genomes 5(1):211–223. doi:10.1007/s11295-008-0176-7

    Article  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121(6):1001–1021. doi:10.1007/s00122-010-1351-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P-davidiana. Theor Appl Genet 109(4):884–897. doi:10.1007/s00122-004-1703-z

    Article  PubMed  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2(4):202–224

    Article  Google Scholar 

  • Sillanpaa MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148(3):1373–1388

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Statistics for biology and health. Springer-Verlag, New York

    Google Scholar 

  • Stich B, Mohring J, Piepho H-P, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178(3):1745–1754. doi:10.1534/genetics.107.079707

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson EA (2008) Linkage analysis. In: Balding DJ, Bishop M, Cannings C (eds) Handbook of statistical genetics, 3rd edn. Wiley, Chichester, pp 1141–1167. doi:10.1002/9780470061619.ch33

  • Tung C-W, Zhao K, Wright M, Ali ML, Jung J, Kimball J, Tyagi W, Thomson M, McNally K, Leung H, Kim H, Ahn S-N, Reynolds A, Scheffler B, Eizenga G, McClung A, Bustamante C, McCouch S (2010) Development of a research platform for dissecting phenotype–genotype associations in rice (Oryza spp.) Rice 3 (4):205-217. doi:10.1007/s12284-010-9056-5

  • Uimari P, Sillanpaa MJ (2001) Bayesian oligogenic analysis of quantitative and qualitative traits in general pedigrees. Genet Epidemiol 21(3):224–242

    Article  PubMed  CAS  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7(4):e35668

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Voorrips RE, Bink MCAM, van de Weg WE (2012) Pedimap: software for the visualization of genetic and phenotypic data in pedigrees. J Hered 103(6):903–907. doi:10.1093/jhered/ess060

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei JM, Ma FW, Shi SG, Qi XD, Zhu XQ, Yuan JW (2010) Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biol Technol 56(2):147–154. doi:10.1016/j.postharvbio.2009.12.003

    Article  CAS  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  PubMed  CAS  Google Scholar 

  • Yu JM, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang GR, Sebolt AM, Sooriyapathirana SS, Wang DC, Bink M, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F-1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6(1):25–36. doi:10.1007/s11295-009-0225-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been carried out with financial support from the Commission of the European Communities, specific research program “Quality of Life and Management of Living Resource”, QLK5-2002-01492 “High-quality Disease Resistant Apples for a Sustainable Agriculture”, coordinated by L. Gianfranceschi from the University of Milan (It.). The first author and last author also acknowledge the support from the U.S. Department of Agriculture’s National Institute of Food and Agriculture–Specialty Crops Research Initiative project, ‘‘RosBREED: Enabling marker-assisted breeding in Rosaceae’’ (2009-51181-05808) and the European Union-funded project ‘‘FruitBreedomics: Integrated approach for increasing breeding efficiency in fruit tree crops’’ (Grant #FP7- 265582; http://fruitbreedomics.com/). The first author also acknowledges the financial support from Kennisbasis project KB-17-003.01-002 Genomic breeding tools and databases. The INRA experimental unit UE-Horti is also especially thanked for strong support in orchard management and fruit harvest.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. A. M. Bink.

Additional information

Communicated by M. J. Sillanpaa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bink, M.C.A.M., Jansen, J., Madduri, M. et al. Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127, 1073–1090 (2014). https://doi.org/10.1007/s00122-014-2281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2281-3

Keywords

Navigation