Skip to main content
Log in

Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Linkage analysis confirmed the association in the region of PHYC in pearl millet. The comparison of genes found in this region suggests that PHYC is the best candidate.

Abstract

Major efforts are currently underway to dissect the phenotype–genotype relationship in plants and animals using existing populations. This method exploits historical recombinations accumulated in these populations. However, linkage disequilibrium sometimes extends over a relatively long distance, particularly in genomic regions containing polymorphisms that have been targets for selection. In this case, many genes in the region could be statistically associated with the trait shaped by the selected polymorphism. Statistical analyses could help in identifying the best candidate genes into such a region where an association is found. In a previous study, we proposed that a fragment of the PHYTOCHROME C gene (PHYC) is associated with flowering time and morphological variations in pearl millet. In the present study, we first performed linkage analyses using three pearl millet F2 families to confirm the presence of a QTL in the vicinity of PHYC. We then analyzed a wider genomic region of ~100 kb around PHYC to pinpoint the gene that best explains the association with the trait in this region. A panel of 90 pearl millet inbred lines was used to assess the association. We used a Markov chain Monte Carlo approach to compare 75 markers distributed along this 100-kb region. We found the best candidate markers on the PHYC gene. Signatures of selection in this region were assessed in an independent data set and pointed to the same gene. These results foster confidence in the likely role of PHYC in phenotypic variation and encourage the development of functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:120–125

    Article  Google Scholar 

  • ASReml package for R (ASReml-R), version 20/32 (2011) VSN International Ltd, Hemel, Hempstead, HP1 1ES, UK

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotech 30:555–561

    Article  CAS  Google Scholar 

  • Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev 11:867–879

    Article  CAS  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed  Google Scholar 

  • Camus-Kulandaivelu L, Chevin LM, Tollon-Cordet C, Charcosset A, Manicacci D et al (2008) Patterns of molecular evolution associated with two selective sweeps in the Tb1-Dwarf8 region in maize. Genetics 180:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Clotault J, Thuillet A-C, Buiron M, De Mita S, Couderc M et al (2012) Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol 29:1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M et al (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    Article  PubMed  Google Scholar 

  • Durand E, Bouchet S, Bertin P, Ressayre A, Jamin P, Charcosset A, Dillmann C, Tenaillon MI (2012) Flowering time in maize: linkage and epistasis at a major effect locus. Genetics 190:1547–1562

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, Wu C-I (2000) Hitchhiking under positive darwinian selection. Genetics 155:1405–1413

    CAS  PubMed  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml User Guide Release 20. VSN International Ltd, Hemel Hempstead, HP1 1ES, UK

  • GRAMENE release 32 (2010) http://www.gramene.org/ (Access Online: November 2010)

  • Hamilton G, Stoneking M, Excoffier L (2005) Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations. Proc Natl Acad Sci USA 102:7476

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Haussmann BIG, Boubacar A, Boureima SS, Vigouroux Y (2006) Multiplication and preliminary characterization of West and Central African pearl millet landraces. Int Sorghum Millet Newsl 47:110–112

    Google Scholar 

  • Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589

    CAS  PubMed  Google Scholar 

  • Kelly JK (1997) A test of neutrality based on interlocus associations. Genetics 146:1197–1206

    CAS  PubMed  Google Scholar 

  • Lakis G, Navascués M, Rekima S, Simon M, Remigereau M-S et al (2012) Evolution of neutral and flowering genes along pearl millet (Pennisetum glaucum) domestication. PLoS One 7:e36642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewin A (2008) R package: Exact tests for linkage disequilibrium and Hardy-Weinberg equilibrium. http://www.r-project.org

  • Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F et al (2006) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58

    Article  CAS  PubMed  Google Scholar 

  • Mariac C, Jehin L, Saïdou AA, Thuillet A-C, Couderc M et al (2011) Genetic basis of pearl millet population adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Mol Ecol 20:81–91

    Article  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oumar I, Mariac C, Pham J-L, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L] R. Br.) as revealed by microsatellite loci. Theor Appl Genet 117:489–497

    Article  CAS  PubMed  Google Scholar 

  • Pavlidis P, Laurent S, Stephan W (2010) msABC: a modification of Hudson’s ms to facilitate multi-locus ABC analysis. Mol Ecol Resour 10:723–727

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:1–7

    Article  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Saïdou A–A, Mariac C, Luong V, Pham J-L, Bezancon G et al (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182:899–910

    Article  PubMed  Google Scholar 

  • Shin JH, Blay S, Lewin-Koh N, McNeney B and Graham J (2010) R package: Graphical display of pairwise linkage disequilibria between SNPs. http://www.R-project.org

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225

    Article  CAS  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Thornton K (2009) Automating approximate Bayesian computation by local linear regression. BMC Genet 10:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L et al (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux Y, Mariac C, Pham J-L, Gérard B, Kapran I et al (2011) Selection for earlier flowering crop associated to climatic variations in the Sahel. PLoS One 6:e19563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Pop Biol 7:256–276

    Article  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, BI IV, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is funded by a French National Agency for Research (ANR) grant (ANR-07-JCJC-0116-01 to Y.V.). This study is also partly supported by Agropolis Fondation (ARCAD project) and Institut de Recherche pour le Développement PhD grant to A-AS.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments of this article comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Vigouroux.

Additional information

Communicated by M. Gore.

A.-A. Saïdou and J. Clotault contributed equally to this work.

Sequence data used in this article are deposited in GenBank under accession numbers KF525941–KF526110 and KF704368.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saïdou, AA., Clotault, J., Couderc, M. et al. Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet. Theor Appl Genet 127, 19–32 (2014). https://doi.org/10.1007/s00122-013-2197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2197-3

Keywords

Navigation