Skip to main content
Log in

Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Host resistance to “yellow dwarf” or “moonlight” disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24–48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afzal AJ (2007) Structure function analysis of a receptor-like kinase protein candidate to underlie soybean cyst nematode resistance: Identification of accessory proteins involved in plant defense. PhD, MBMB, SIUC, Carbondale IL, USA.

  • Afzal AJ, Lightfoot DA (2007) Inclusion bodies contain RHG1/RFS2 folding intermediates: a novel refolding protocol for protein purification. Protein Expr Purific 53:346–355

    Article  CAS  Google Scholar 

  • Afzal AJ, Natarajan A, Saini N, Iqbal MJ, Geisler MA, El Shemy H, Mungur R, Willmitzer L, Lightfoot DA (2009) The nematode resistance allele at the rhg1 locus alters the proteome and metabolome of soybean roots. Plant Physiol 151:1264–1280

    Article  PubMed  CAS  Google Scholar 

  • Arelli PR (1994) Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Dis 78:898–900

    Article  Google Scholar 

  • Arelli PR, Sleper DA, Yue P, Wilcox JA (2000) Soybean reaction to Races 1 and 2 of Heterodera glycines. Crop Sci 40:824–826

    Article  Google Scholar 

  • Bekal S, Niblack TL, Lambert KN (2003) A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Mol Plant Microb Interact 16:439–446

    Article  CAS  Google Scholar 

  • Brucker E, Niblack T, Kopisch-Obuch FJ, Diers BW (2005) The effect of rhg1 on reproduction of Heterodera glycines in the field and greenhouse and associated effects on agronomic traits. Crop Sci 45:1721–1727

    Article  Google Scholar 

  • Caldwell BE, Brim CA, Ross JP (1960) Inheritance of resistance of soybeans to the cyst nematode. Heterodera glycines Agron J 52:635–636

    Google Scholar 

  • Chang SJC, Doubler TW, Kilo VY, AbuThredeih J, Prabhu R, Freire V, Suttner RJ, Klein JH III, Schmidt ME, Gibson PT, Lightfoot DA (1997) Association of loci underlying field resistance to soybean sudden death syndrome (SDS) and cyst nematode (SCN) race 3. Crop Sci 37:965–971

    Article  CAS  Google Scholar 

  • Concibido VC, Lange DA, Denny RL, Orf JH, Young ND (1997) Genome mapping of soybean cyst nematode resistance genes in ‘Peking’ PI 90763 and PI 88788 using DNA markers. Crop Sci 37:258–264

    Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny D, Shoemaker RC, Matthews BF, Jarvik T, Young ND (1999) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919–928

    Article  CAS  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    Article  PubMed  Google Scholar 

  • Gao BR, Allen EL, Davis TJ, Baum RS, Hussey (2004) Molecular characterization and developmental expression of a cellulose-binding protein gene in the soybean cyst nematode Heterodera glycines. Int J Parasitol 34:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean: establishment of high-resolution two-dimensional reference maps expression profiles and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  PubMed  CAS  Google Scholar 

  • Hartwig EE, Epps JM (1973) Registration of Forrest soybeans. Crop Sci 13:287

    Article  Google Scholar 

  • Hauge BM, Wang ML, Parsons JD, Parnell LD (2006) Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. Patent # 7,154,021

  • Hurkman WJ, Tanaka CR (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  PubMed  CAS  Google Scholar 

  • Hussey RS, Grundler FMW (1998) Nematode parasitism of plants. In: Perry RN, Wright DJ (eds) The physiology andbiochemistry of free-living and plant parasitic nematodes. CAB International Wallingford, USA, pp 213–243

    Google Scholar 

  • Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM et al (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944

    Article  PubMed  CAS  Google Scholar 

  • Iqbal MJ, Ahsan R, Afzal AJ, Jamai A, Meksem K, El Shemy H, Lightfoot DA (2008) Analysis of the activity of the soybean laccase encoded within the Rfs2/Rhg1/Rfs2 locus. Curr Iss Mol Biol 11:i11–i19

    Google Scholar 

  • Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ, Lightfoot DA (2006) An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 113:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Keen NT, Roberts PA (1998) Plant parasitic nematodes: digesting a page from the microbe book. Proc Natl Acad Sci USA 95:4789–4790

    Article  PubMed  CAS  Google Scholar 

  • Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU (2004) Sequential auto-phosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 279:5227–5236

    Article  PubMed  CAS  Google Scholar 

  • Kopisch-Obuch FJ, McBroom KL, Diers BW (2005) Association between SCN resistance loci and yield in soybean. Crop Sci 45:956–965

    Article  Google Scholar 

  • Lease KA, Lau NY, Schuster RA, Torii KU, Walker JC (2001) Receptor serine/threonine protein kinases in signalling: analysis of the erecta receptor-like kinase of Arabidopsis thaliana. New Phytol 151:133–143

    Article  CAS  Google Scholar 

  • Li CW, Bai YL, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible monogenic- and polygenic resistance responses are mainly in timing. Plant Mol Biol 62:127–140

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang C, Gao Z-S, Johannes M, Smulders M, Ma Z, Liu Z-X, Nan H-Y, Chang R-Z, Qiu L-J (2009) Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breed 24:63–76

    Article  Google Scholar 

  • Lightfoot DA (2008) Soybean genomics: developments through the use of cultivar Forrest. Int J Plant Genom 2008:1–22

    Article  Google Scholar 

  • Lightfoot DA, Meksem K (2010) Polypeptides relating to loci underlying resistance to soybean cyst nematode and sudden death syndrome and methods of use thereof. US Patent # 7,902,337

  • Lightfoot DA, Njiti VN, Gibson PT, Kassem MA, Iqbal MJ, Meksem K (2005) Registration of the Essex X Forrest recombinant inbred line mapping population. Crop Sci 45:1678–1681

    Article  Google Scholar 

  • Mahalingam R, Skorupska HT (1996) Cytological expression of early response to infection by Heterodera glycines Ichinohe in resistant PI 437654 soybean. Genome 39:986–998

    Article  PubMed  CAS  Google Scholar 

  • Meksem K, Doubler TW, Chancharoenchai K, Njiti VN, Chang SJC, Arelli PR, Lightfoot DA (1999) Clustering among loci underlying soybean resistance to Fusarium solani SDS and SCN in near-isogenic lines. Theor Appl Genet 99:1131–1142

    Article  CAS  Google Scholar 

  • Meksem K, Zobrist K, Ruben E, Hyten DL, Quanzhou T, Zhang HB, Lightfoot DA (2000) Two large-insert soybean genomic libraries constructed in a binary vector: applications in chromosome walking and genome wide physical mapping. Theor Appl Genet 101:747–755

    Article  CAS  Google Scholar 

  • Meksem K, Ruben E, Hyten DL, Schmidt ME, Lightfoot DA (2001a) High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance gene Rhg4 by using Taqman™ probes. Mol Breed 7:63–71

    Article  CAS  Google Scholar 

  • Meksem K, Pantazopoulos P, Njiti VN, Hyten DL, Arelli PR, Lightfoot DA (2001b) ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 103:710–717

    Article  CAS  Google Scholar 

  • Meksem K, Iqbal MJ, Ruben E, Hyten DL, Triwitayakorn K, Lightfoot DA (2001c) Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genom 265:207–214

    Article  CAS  Google Scholar 

  • Melito S, Heuberger AL, Cook D, Diers BW, Macguidwin AE, Bent AF (2010) A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biol. 10:104–112

    Article  PubMed  Google Scholar 

  • Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young ND (2005) Highly syntenic regions in the genomes of soybean Medicago truncatula and Arabidopsis thaliana. BMC Plant Biol 5:15

    Article  PubMed  Google Scholar 

  • Nelsen N, Zhigang L, Warner AW, Matthews BF, Knap HT (2003) Genomic polymorphisms identifies a subtilisin-like protease near the Rhg4 locus in soybean. Crop Sci 44:265–273

    Article  Google Scholar 

  • Niblack TL, Noel GR, Lambert KL (2003) The Illinois SCN type test: practical application of the Hg type classification system. J Nematol 35:345–355

    Google Scholar 

  • Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E a factor that controls virus susceptibility. BMC Plant Biol 7:34–44

    Article  PubMed  Google Scholar 

  • Njiti VN, Doubler TW, Suttner RJ, Gray LE, Gibson PT, Lightfoot DA (1998) Resistance to soybean sudden death syndrome and root colonization by Fusarium solani f sp glycine in near-isogenic lines. Crop Sci 38:472–477

    Article  Google Scholar 

  • Prabhu RR, Njiti VN, Johnson JE, Schmidt ME, Klein RJ, Lightfoot DA (1999) Selecting soybean cultivars for dual resistance to cyst nematode sudden death syndrome with two DNA markers. Crop Sci 39(4):982–987

    Google Scholar 

  • Riggs RD, Schmitt DP (1988) Complete characterization of the race scheme for Heterodera glycines. J Nematol 20:392–395

    PubMed  CAS  Google Scholar 

  • Ruben E, Jamai A, Afzal J, Njiti VN, Triwitayakorn K, Iqbal MJ, Yaegashi S, Bashir R, Kazi S, Arelli PR, Town CD, Ishihara H, Meksem K, Lightfoot DA (2006) Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genom 276:503–516

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance chromosomal location and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Saini N, Shultz JL, Lightfoot DA (2008) Re-annotation of the physical map of Glycine max for ploidy by BAC end sequence driven whole genome shotgun read assembly. BMC Genomics 9:323–940

    Article  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, D’Ascenzo M, Martin GB (2000) Thr38 and Ser198 are Pto auto-phosphorylation sites required for the AvrPtoPto-mediated hypersensitive response. EMBO J 19:2257–2269

    Article  PubMed  CAS  Google Scholar 

  • Sheffield J, Taylor N, Fauquet C, Chen SX (2006) The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics 6:1588–1598

    Article  PubMed  CAS  Google Scholar 

  • Shultz JL, Kurunam D, Shopinski K, Iqbal MJ, Kazi S, Zobrist K, Bashir R, Yaegashi S, Lavu N, Afzal AJ, Yesudas CR, Kassem MA, Zhang WuC, HB TownCD, Meksem K, Lightfoot DA (2006) The Soybean Genome Database (SoyGD): a browser for display of duplicated polyploid regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34:D758–D765

    Article  PubMed  CAS  Google Scholar 

  • Shultz JL, Kazi S, Bashir R, Afzal JA, Lightfoot DA (2007) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Srour A, Afzal AJ, Blahut-Beatty L, Hemmati N, Simmonds DH, Town CD Sharma H, Lightfoot DA (2011) The Rhg1/Rfs2 receptor-like kinase transgene caused resistance to sudden death syndrome and soybean cyst nematode but susceptibility to insect herbivory. BMC Genomics (in review)

  • Triwitayakorn K, Njiti VN, Iqbal MJ, Yaegashi S, Town CD, Lightfoot DA (2005) Genomic analysis of a region encompassing QRfs1 and QRfs2: genes that underlie soybean resistance to sudden death syndrome. Genome 48:125–138

    Article  PubMed  CAS  Google Scholar 

  • Vierling RA, Faghihi J, Ferris VR, Ferris JM (1996) Association of RFLP markers with loci conferring broad-based resistance to the soybean cyst nematode (Heterodera glycines). Theor Appl Genet 92:83–86

    Article  Google Scholar 

  • Wang D, Arelli PR, Shoemaker RC, Diers BW (2001) Loci underlying resistance to Race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor Appl Genet 103:561–566

    Article  CAS  Google Scholar 

  • Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17:1685–1703

    Article  PubMed  CAS  Google Scholar 

  • Webb DM, Baltazar BM, Arelli PR, Schupp J, Clayton K, Keim P, Beavis WD (1995) Genetic-mapping of soybean cyst-nematode race-3 resistance loci in the soybean PI 437654. Theor Appl Genet 91:574–581

    Article  CAS  Google Scholar 

  • Wrather JA, Anderson TR, Arsyad DM, Tan Y, Ploper LD, Porta-Puglia A, Ram HH, Yorinori JT (2001) Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can J Plant Path 23:115–121

    Article  Google Scholar 

  • Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang HB (2004) A BAC- and BIBAC-based physical map of the soybean genome. Genom Res 14:319–326

    Article  CAS  Google Scholar 

  • Xiang Y, Cao Y, Xu C, Li X, Wang S (2006) Xa3 conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein is the same as Xa26. Theor Appl Genet 113:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Haroon M, Lightfoot DA, Pelletier Y, Liu Q, Li X-Q (2008) A high-resolution melting approach for analyzing allelic expression dynamics. Curr Issue Mol Biol 11:i1–i9

    Google Scholar 

  • Yue P, Arelli PR, Sleper DA (2001) Molecular characterization of resistance to Heterodera glycines in soybean PI438489B. Theor Appl Genet 102:921–928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The physical map was based upon work supported by the National Science Foundation under Grant No. 9872635. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The continued support of SIUC, College of Agriculture and Office of the Vice Chancellor for Research to DAL is appreciated. The authors thank Dr. Q. Tao and Dr, H.B. Zhang for assistance with fingerprinting. We thank Dr. C. Town and Dr. C. Foo at TIGR for the BES. We thank the DOE CJSP for release of the WGS reads and scaffolds. We thank the Government of India for support of the Fellowship for NS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Lightfoot.

Additional information

Communicated by I. Rajcan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 160 kb)

Supplementary material 2 (PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, A.J., Srour, A., Saini, N. et al. Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode. Theor Appl Genet 124, 1027–1039 (2012). https://doi.org/10.1007/s00122-011-1766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1766-6

Keywords

Navigation