Skip to main content

Advertisement

Log in

Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genetic determinism of developmental stages in grapevine was studied in the progeny of a cross between grapevine cultivars Riesling and Gewurztraminer by combining ecophysiological modelling, genetic analysis and data mining of the grapevine whole genome sequence. The dates of three phenological stages, budbreak, flowering and veraison, were recorded during four successive years for 120 genotypes in the vineyard. The phenotypic data analysed were the duration of three periods expressed in thermal time (degree-days): 15 February to budbreak (Bud), budbreak to flowering (Flo) and flowering to veraison (Ver). Parental and consensus genetic maps were built using 153 microsatellite markers on 188 individuals. Six independent quantitative trait loci (QTLs) were detected for the three phases. They were located on chromosomes 4 and 19 for Bud, chromosomes 7 and 14 for Flo and chromosomes 16 and 18 for Ver. Interactions were detected between loci and also between alleles at the same locus. Using the available grapevine whole-genome sequences, candidate genes underlying the QTLs were identified. VvFT, on chromosome 7, and a CONSTANS-like gene, on chromosome 14, were found to colocalise with the QTLs for flowering time. Genes related to the abscisic acid response and to sugar metabolism were detected within the confidence intervals of QTLs for veraison time. Their possible roles in the developmental process are discussed. These results raise new hypotheses for a better understanding of the physiological processes governing grapevine phenology and provide a framework for breeding new varieties adapted to the future predicted climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almada R, Cabrera N, Casaretto JA, Ruiz-Lara S, Villanueva EG (2009) VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Rep 28:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    Article  PubMed  CAS  Google Scholar 

  • Baggiolini M (1952) Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Rev Rom Agric Vitic 8:4–6

    Google Scholar 

  • Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118:653–669

    Article  PubMed  CAS  Google Scholar 

  • Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176

    Article  PubMed  Google Scholar 

  • Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl E, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8 a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53

    Google Scholar 

  • Bottcher C, Keyzers RA, Boss PK, Davies C (2010) Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J Exp Bot 61:3615–3625

    Article  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  PubMed  CAS  Google Scholar 

  • Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Calonje M, Martinez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650

    Article  PubMed  CAS  Google Scholar 

  • Chervin C, Deluc L (2010) Ethylene signalling receptors and transcription factors over the grape berry development: gene expression profiling. Vitis 49:129–136

    CAS  Google Scholar 

  • Chervin C, Tira-umphon A, Terrier N, Zouine M, Severac D, Roustan JP (2008) Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Physiol Plant 134:534–546

    Article  PubMed  CAS  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38

    Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Di Gaspero G, Cattonaro F (2010) Application of genomics to grapevine improvement. Aust J Grape Wine Res 16:122–130

    Article  CAS  Google Scholar 

  • Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-Type MADS Box genes in grapevine. Plant Physiol 149:354–369

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382

    Article  PubMed  CAS  Google Scholar 

  • Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99

    Article  Google Scholar 

  • Duchêne E, Butterlin G, Claudel P, Dumas V, Jaegli N, Merdinoglu D (2009) A grapevine (Vitis vinifera L.) deoxy-d-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theor Appl Genet 118:541–552

    Article  PubMed  Google Scholar 

  • Duchêne E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41:193–204

    Article  Google Scholar 

  • Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD (2010) Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232:219–234

    Article  PubMed  CAS  Google Scholar 

  • Garcia de Cortazar Atauri I, Brisson N, Gaudillere JP (2009) Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int J Biometeorol 53:317–326

    Article  PubMed  Google Scholar 

  • Herrmann D, Barre P, Santoni S, Julier B (2010) Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. Theor Appl Genet 121:865–876

    Article  PubMed  CAS  Google Scholar 

  • Hey SJ, Byrne E, Halford NG (2010) The interface between metabolic and stress signalling. Ann Bot 105:197–203

    Article  PubMed  CAS  Google Scholar 

  • Hoth S, Niedermeier M, Feuerstein A, Hornig J, Sauer N (2010) An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression. Planta 232:911–923

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:U463–U465

    Article  Google Scholar 

  • Jiang WB, Yu DQ (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9:96

    Article  PubMed  Google Scholar 

  • Jimenez-Gomez JM, Alonso-Blanco C, Borja A, Anastasio G, Angosto T, Lozano R, Martinez-Zapater JM (2007) Quantitative genetic analysis of flowering time in tomato. Genome 50:303–315

    Article  PubMed  CAS  Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343

    Article  Google Scholar 

  • Keilin T, Pang X, Venkateswari J, Halaly T, Crane O, Keren A, Ogrodovitch A, Ophir R, Volpin H, Galbraith D, Or E (2007) Digital expression profiling of a grape-bud EST collection leads to new insight into molecular events during grape-bud dormancy release. Plant Sci 173:446–457

    Article  CAS  Google Scholar 

  • Kline KG, Sussman MR, Jones AM (2010) Abscisic acid receptors. Plant Physiol 154:479–482

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Sadamatsu K, Goto-Yamamoto N (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomic 10:367–381

    Article  CAS  Google Scholar 

  • Lee JH, Park SH, Lee JS, Ahn JH (2007a) A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. BBA-Gene Regul Mech 1769:455–461

    CAS  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007b) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Gene Dev 21:397–402

    Article  PubMed  CAS  Google Scholar 

  • Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278

    Article  PubMed  Google Scholar 

  • Martinez-Zapater JM, Carmona MJ, Diaz-Riquelme J, Fernandez L, Lijavetzky D (2010) Grapevine genetics after the genome sequence: challenges and limitations. Aust J Grape Wine Res 16:33–46

    Article  Google Scholar 

  • Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith D, Or E, Fennell A (2009) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomic 9:81–96

    Article  CAS  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Melzer R, Wang YQ, Theissen G (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 21:118–128

    Article  PubMed  CAS  Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366

    Article  CAS  Google Scholar 

  • Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786

    Article  PubMed  CAS  Google Scholar 

  • Olsson A, Engström P, Söderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677

    Article  PubMed  CAS  Google Scholar 

  • Ophir R, Pang XQ, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E (2009) Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol 71:403–423

    Article  PubMed  CAS  Google Scholar 

  • Owen SJ, Lafond MD, Bowen P, Bogdanoff C, Usher K, Abrams SR (2009) Profiles of abscisic acid and its catabolites in developing Merlot grape (Vitis vinifera) berries. Am J Enol Vitic 60:277–284

    CAS  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genomic 3:144–152

    Article  CAS  Google Scholar 

  • Pierre J-B, Bogard M, Herrmann D, Huyghe C, Julier B (2010) A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breed 28:25–35

    Article  Google Scholar 

  • Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 422:3083–3092

    Article  Google Scholar 

  • Ramos MC, Jones GV, Martinez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38:1–15

    Article  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyse the genetic variability of the responses of maize leaf growth to temperatures and water deficit. Plant Physiol 131:664–675

    Article  PubMed  CAS  Google Scholar 

  • Soar CJ, Sadras VO, Petrie PR (2008) Climate drivers of red wine quality in four contrasting Australian wine regions. Aust J Grape Wine Res 14:78–90

    Article  Google Scholar 

  • Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33:1129–1139

    Article  CAS  Google Scholar 

  • Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA, Fennell AY (2010) Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. Plant Mol Biol 73:191–205

    Article  PubMed  CAS  Google Scholar 

  • Uptmoor R, Osei-Kwarteng M, Gurtler S, Stutzel H (2009) Modeling the effects of drought stress on leaf development in a Brassica oleracea doubled haploid population using two-phase linear functions. J Am Soc Hortic Sci 134:543–552

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  Google Scholar 

  • Walton EF, Wu RM, Richardson AC, Davy M, Hellens RP, Thodey K, Janssen BJ, Gleave AP, Rae GM, Wood M, Schaffer RJ (2009) A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds. J Exp Bot 60:3835–3848

    Article  PubMed  CAS  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195–204

    Article  CAS  Google Scholar 

  • Yin X, Struik PC, van Eeuwijk FA, Stam P, Tang J (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:967–976

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially financed by the ERA-NET Plant Genomics Program (GRASP GRAPE WINE 072b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Duchêne.

Additional information

Communicated by C. Gebhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1 (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duchêne, E., Butterlin, G., Dumas, V. et al. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 124, 623–635 (2012). https://doi.org/10.1007/s00122-011-1734-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1734-1

Keywords

Navigation