Skip to main content
Log in

An Assessment of the Genetic Diversity within a Collection of Wild Cranberry (Vaccinium macrocarpon Ait.) Clones with RAPD-PCR

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Forty-three wild cranberry (Vaccinium macrocarpon Ait.) clones collected from four Canadian provinces and five cranberry cultivars were assessed for genetic variability by using random amplified polymorphic DNA (RAPD)-PCR. Fourteen primers generated 161 polymorphic RAPD-PCR bands. A substantial degree of genetic diversity was found among the wild cranberry collections. Cluster analysis by the unweighted pair-group method with arithmetic averages (UPGMA) separated the wild clones and three cultivars into five main clusters, and identified the two remaining cultivars as outliers. Furthermore, within four clusters, the genotypes tended to form sub-clusters that were in agreement with the principal coordinate (PCO) analysis. Geographical distribution explained 10% of total variation as revealed by analysis of molecular variance (AMOVA). The RAPD markers detected a sufficient degree of polymorphism to differentiate among cranberry clones and cultivars, making this technology valuable for germplasm management and the more efficient choice of parents in current cranberry breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R.P. and Rieseberg L.H. (1998). Theor. Appl. Genet. 97: 323–326

    Article  CAS  Google Scholar 

  • Albert T., Raspé O. and Jacquemart A.L. (2003). Clonal structure in Vaccinium mytrillus L. revealed by RAPD and AFLP markers. Int. J. Plant Sci. 164: 649–655

    Article  CAS  Google Scholar 

  • Albert T., Raspé O. and Jacquemart A.L. (2005a). Diversity and spatial structure of clones in Vaccinium uliginosum populations. Can. J. Bot. 83: 211–218

    Article  Google Scholar 

  • Albert T., Raspé O. and Jacquemart A.L. 2005b. Clonal diversity and genetic structure in Vaccinium myrtillus L. populations from different habitats. Belg. J. Bot. 137: 155–162.

  • Aldrich P.R. and Doebley J. (1992). Theor. Appl. Genet. 85: 293–302

    Google Scholar 

  • Auge H., Neuffer B., Erlinghagen F., Grupe R. and Brandl R. (2001). Demographic and random amplified polymorphic DNA analyses reveal high levels of genetic diversity in a clonal violet. Mol. Ecol. 10: 1811–1819

    Article  PubMed  CAS  Google Scholar 

  • Burgher K.L., Jamieson A.R. and Lu X. (2002). Genetic relationships among lowbush blueberry genotypes as determined by randomly amplified polymorphic DNA analysis. J. Am. Soc. Hort. Sci. 127: 98–103

    CAS  Google Scholar 

  • Cahill J.P. (2004). Genetic diversity among varieties of chia (Salvia hispanica L.). Genet. Resour. Crop Evol. 51: 773–781

    Article  CAS  Google Scholar 

  • Caruso F.L. (1997). Trends in cranberry production. Acta Hort. 446: 41–45

    Google Scholar 

  • Debnath S.C. (2000). Combined application of classical and biotechnological techniques in the development of small fruits important to Newfoundland and Labrador (Abstr.). Can. J. Plant Sci. 80: 233

    Google Scholar 

  • Debnath S.C. (2005). Differentiation of Vaccinium cultivars and wild clones using RAPD markers. J. Plant Biochem. Biotech. 14: 173–177

    Google Scholar 

  • Debnath S.C. and McRae K.B. (2001). An efficient in vitro shoot propagation of cranberry (Vaccinium macrocarpon Ait.) by axillary bud proliferation. In Vitro Cell Dev. Biol. Plant 37: 243–249

    Article  CAS  Google Scholar 

  • Debnath S.C. and McRae K.B. (2005). A one-step in vitro cloning procedure for cranberry (Vaccinium macrocarpon Ait.): the influence of cytokinins on shoot proliferation and rooting. Small Fruits Rev. 4: 57–75

    Article  CAS  Google Scholar 

  • Doyle J.J. and Doyle J.L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem. Bull. 19: 11–15

    Google Scholar 

  • Excoffier L., Smouse P. and Quattro J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondrial DNA restriction data. Genetics 131: 479–491

    PubMed  CAS  Google Scholar 

  • Galletta G.J. and Ballington J.R. (1996). Blueberries, cranberries and lingonberries. In: Janick, J. and Moore, J.N. (eds) Fruit Breeding Vol. II. Vine and Small Fruits, pp 1–107. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Gower J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338

    Article  Google Scholar 

  • Hedrick P. (1992). Shooting the RAPDs. Nature (London) 355: 679–680

    Article  Google Scholar 

  • Hong V. and Wrolstad R.E. (1990). Use of HPLC separation/photodiode array detection for characterization of anthocyanins. J. Agr. Food Chem. 38: 708–715

    Article  CAS  Google Scholar 

  • Hurka H. (1994). Conservation genetics and the role of botanic gardens. In: Loeschecke, V., Tomiuk, J. and Jain, S.K. (eds) Conservation Genetics, pp 371–380. Birkahuser Verlag, Basel

    Google Scholar 

  • Kjølner S., Sastad S.M., Taberlet P. and Brochmann C. (2004). Mol. Ecol. 13: 81–86

    Article  PubMed  CAS  Google Scholar 

  • Kreher S.A., Foré S.A. and Collins B.S. (2000). Genetic variation within and among patches of the clonal species, Vaccinium stamineum L. Mol. Ecol. 9: 1247–1252

    Article  PubMed  CAS  Google Scholar 

  • Leahy M., Speroni J. and Starr M. (2002). Latest development in cranberry health research. Pharm. Biol. 40: 50–54

    CAS  Google Scholar 

  • Nei M. and Li W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Novy R.G., Vorsa N. and Patten K. (1996). Identifying genotypic heterogeneity in ‘McFarlin’ cranberry: a randomly-amplified polymorphic DNA (RAPD) and phenotypic analysis. J. Am. Soc. Hort. Sci. 121: 210–215

    Google Scholar 

  • Nybom H. and Bartish I.V. (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect. Plant Ecol. Evol. Syst. 3: 93–114

    Article  Google Scholar 

  • Ortiz R. and Vorsa N. (2004). Transmission of a cyclical translocation in two cranberry cultivars. Hereditas 140: 81–86

    Article  PubMed  CAS  Google Scholar 

  • Persson H.A. and Gustavsson B.A. (2001). The extent of clonality and genetic diversity in lingonberry (Vaccinium vitis-idaea L.) revealed by RAPDs and leaf-shape analysis. Mol. Ecol. 10: 1385–1397

    Article  PubMed  CAS  Google Scholar 

  • Polashock J. and Vorsa N. (2002). Development of SCARs for DNA fingerprinting and germplasm analysis of American cranberry. J. Am. Soc. Hort. Sci. 127: 677–684

    CAS  Google Scholar 

  • Rohlf F.J. (1998). NTSYS-pc. Numerical Taxonomy and Multivariate Analysis SystemVersion 2.0. Exeter Software. Setauket, New York

    Google Scholar 

  • Sapers G. and Hargrave D. (1987). Proportions of individual anthocyanins in friuts of cranberry cultivars. J. Am. Soc. Hort. Sci. 112: 100–104

    CAS  Google Scholar 

  • Schneider S., Roessli D. and Excoffier L. (2000). Arlequin Version 2.000. A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Shrestha S., Adkins S.W., Graham G.C. and Loch D.S. (2005). An identification tool for the Australian weedy Sporobolus species based on random amplified polymorphic DNA (RAPD) profiles. Aust. J. Agr. Res. 56: 157–167

    Article  CAS  Google Scholar 

  • Sneath P.H. and Sokal R.R. (1973). Numerical Taxonomy. The Principles and Practice of Numerical Classification. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Excoffier L. and Stewart C.N. (1996). Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). J. Evol. Biol. 9: 153–171

    Article  CAS  Google Scholar 

  • Nilsen E.T. and Stewart C.N. (1995). Phenotypic plasticity and genetic variation of Vaccinium macrocarponthe American cranberry. I. Reaction norms of clones from central and marginal populations in a common garden. Int. J. Plant Sci. 156: 687–697

    Article  Google Scholar 

  • Vander Kloet S.P. (1983). Rhodora 85: 1–43

    Google Scholar 

  • Vander Kloet S.P. and Paterson I.G. (2000). RAPD assessment of novelties resulting in a new species of Vaccinium L. (Ericaceae) from Vietnam. Bot. J. Linnean Soc. 145: 575–586

    Article  Google Scholar 

  • Weising K., Nybom H., Wolff K. and Meyer W. (1995). DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wilkie S. (1997). Isolation of total genomic DNA. In: Clark, M.S. (eds) Plant Molecular Biology – A Laboratory Manual, pp 3–15. Springer Verlag, Berlin

    Google Scholar 

  • Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A. and Tingey S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K., Li H., Klein P.E., Gorena R.L. and Salzman R.A. (2003). Using high-throughput amplified fragment length polymorphism to distinguish sorghum greenbug (Homoptera: Aphididae) biotypes. Agr. Forest Ent. 5: 311–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Debnath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debnath, S.C. An Assessment of the Genetic Diversity within a Collection of Wild Cranberry (Vaccinium macrocarpon Ait.) Clones with RAPD-PCR. Genet Resour Crop Evol 54, 509–517 (2007). https://doi.org/10.1007/s10722-006-0007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-0007-3

Key words

Navigation