Skip to main content
Log in

Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Segregation distortion (SD) is often observed in plant populations; its presence can affect mapping and breeding applications. To investigate the prevalence of SD in diploid alfalfa (Medicago sativa L.), we developed two unrelated segregating F1 populations and one F2 population. We genotyped all populations with SSR markers and assessed SD at each locus in each population. The three maps were syntenic and largely colinear with the Medicago truncatula genome sequence. We found genotypic SD for 24 and 34% of markers in the F1 populations and 68% of markers in the F2 population; distorted markers were identified on every linkage group. The smaller percentage of genotypic SD in the F1 populations could be because they were non-inbred and/or due to non-fully informative markers. For the F2 population, 60 of 90 mapped markers were distorted, and they clustered into eight segregation distortion regions (SDR). Most SDR identified in the F1 populations were also identified in the F2 population. Genotypic SD was primarily due to zygotic rather than allelic distortion, suggesting zygotic not gametic selection is the main cause of SD. On the F2 linkage map, distorted markers in all SDR except two showed heterozygote excess. The severe SD in the F2 population likely biased genetic distances among markers and possibly also marker ordering and could affect QTL mapping of agronomic traits. To reduce the effects of SD and non-fully informative markers, we suggest constructing linkage maps and conducting QTL mapping in advanced generation populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bailey NTJ (1949) The estimation of linkage with differential viability, II and III. Heredity 3:220–228

    Article  Google Scholar 

  • Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interaction in alfalfa is greater in autotetraploids than diploid. Crop Sci 34:823–829

    Article  Google Scholar 

  • Brouwer DJ, Osborn TC (1999) A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet 99:1194–1200

    Article  CAS  Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    Article  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev 10:783–796

    Article  CAS  Google Scholar 

  • Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC(1) Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867

    PubMed  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JI (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Echt CS, Kidwell KK, Knapp SJ, Osborn TC, Mccoy TJ (1994) Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37:61–71

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex

    Google Scholar 

  • Faris JD, Laddomada B, Gill BS (1998) Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319–327

    PubMed  CAS  Google Scholar 

  • Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Hall MC, Willis JH (2005) Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications for genomic divergence. Genetics 170:375–386

    Article  PubMed  CAS  Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9

    Article  PubMed  Google Scholar 

  • Kaló P, Endre G, Zimányi L, Csanádi G, Kiss GB (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet 100:641–657

    Article  Google Scholar 

  • Kamphuis LG, Williams AH, D’Souza NK, Pfaff T, Ellwood SR, Groves EJ, Singh KB, Oliver RP, Lichtenzveig J (2007) The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. New Phytol 174:299–303

    Article  PubMed  CAS  Google Scholar 

  • Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    PubMed  CAS  Google Scholar 

  • Kiss GB, Csanadi G, Kalman K, Kalo P, Okresz L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:129–137

    PubMed  CAS  Google Scholar 

  • Li XH, Brummer EC (2009) Inbreeding depression for fertility and biomass in advanced generations of inter- and intrasub specific hybrids of tetraploid alfalfa. Crop Sci 49:13–19

    Article  Google Scholar 

  • Lorieux M, Perrier X, Goffinet B, Lanaud C, DGd León (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80

    Google Scholar 

  • Lorieux M, Perrier X, Goffinet B, Lanaud C, DGd León (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89

    Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Zhang YM, Xu S (2005) A quantitative genetics model for viability selection. Heredity 94:347–355

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Mangelsdorf PC, Jones DF (1926) The expression of Mendelian factors in the gametophyte of maize. Genetics 11:423–455

    PubMed  CAS  Google Scholar 

  • McDaniel SF, Willis JH, Shaw AJ (2007) A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics 176:2489–2500

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds T (1995) Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140:1105–1109

    PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Payseur BA, Hoekstra HE (2005) Signatures of reproductive isolation in patterns of single nucleotide diversity across inbred strains of mice. Genetics 171:1905–1916

    Article  PubMed  CAS  Google Scholar 

  • Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36:404–417

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MM (1942) Preferential segregation in maize. Genetics 27:395–407

    PubMed  CAS  Google Scholar 

  • Riaz S, Tenscher AC, Rubin J, Graziani R, Pao SS, Walker MA (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor Appl Genet 117:671–681

    Article  PubMed  CAS  Google Scholar 

  • Robins JG, Luth D, Campbell IA, Bauchan GR, He CL, Viands DR, Hansen JL, Brummer EC (2007) Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci 47:1–10

    Article  CAS  Google Scholar 

  • Sakiroglu M, Doyle JJ, Charles Brummer E (2010) Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theor Appl Genet 121:403–415

    Article  PubMed  Google Scholar 

  • Sandler L, Hiraizumi Y, Sandler I (1959) Meiotic drive in natural populations of Drosophila melanogaster. I. the cytogenetic basis of segregation-distortion. Genetics 44:233–250

    PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Sledge MK, Ray IM, Jiang G (2005) An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet 111:980–992

    Article  PubMed  CAS  Google Scholar 

  • Sprague EW (1959) Cytological and fertility relationships of Medicago sativa, Medicago falcata, and Medicago gaetula. Agron J 51:249–252

    Article  Google Scholar 

  • Tavoletti S, Veronesi F, Osborn TC (1996) RFLP linkage map of an alfalfa meiotic mutant based on an F-1 population. J Hered 87:167–170

    CAS  Google Scholar 

  • Vogl C, Xu S (2000) Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics 155:1439–1447

    PubMed  CAS  Google Scholar 

  • Wang C, Zhu C, Zhai H, Wan J (2005) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res 86:97–106

    Article  PubMed  CAS  Google Scholar 

  • Williams CG, Zhou Y, Hall SE (2001) A chromosomal region promoting outcrossing in a conifer. Genetics 159:1283–1289

    PubMed  CAS  Google Scholar 

  • Williams CG, Auckland LD, Reynolds MM, Leach KA (2003) Overdominant lethals as part of the conifer embryo lethal system. Heredity 91:584–592

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208

    Article  PubMed  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463

    Article  PubMed  CAS  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

  • Zhu CS, Zhang YM (2007) An EM algorithm for mapping segregation distortion loci. BMC Genet 8:82

    Article  PubMed  Google Scholar 

  • Zhu C, Wang C, Zhang YM (2007a) Modeling segregation distortion for viability selection. I. Reconstruction of linkage maps with distorted markers. Theor Appl Genet 114:295–305

    Article  PubMed  Google Scholar 

  • Zhu CS, Wang FH, Wang JF, Li GJ, Zhang HS, Zhang YM (2007b) Reconstruction of linkage maps in the distorted segregation populations of backcross, doubled haploid and recombinant inbred lines. Chin Sci Bull 52:1648–1653

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by the USDA-DOE Plant Feedstock Genomics for Bioenergy program, award # 2009-65504-05809 to ECB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Charles Brummer.

Additional information

Communicated by J. Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wang, X., Wei, Y. et al. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications. Theor Appl Genet 123, 667–679 (2011). https://doi.org/10.1007/s00122-011-1617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1617-5

Keywords

Navigation