Skip to main content
Log in

High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The two forms of cytoplasmic male sterility (CMS) native to the oilseed rape or canola species Brassica napus, nap and pol, have novel features that may provide insight into the molecular mechanisms through which CMS/nuclear restorer systems evolve. One such feature is the finding that the distinct nuclear restorer genes for the two systems represent different alleles or haplotypes of the same nuclear locus. Improved understanding of how these systems have evolved will require molecular cloning and characterization of this novel locus. We have employed an approach that exploits the regional co-linearity between the Arabidopsis and Brassica genomes to construct a high-resolution genetic map of the nuclear restorer for the pol system, Rfp. Specifically, Arabidopsis-derived sequences have been used as a set of ordered RFLP probes to localize Rfp to a region of the B. napus genome equivalent to a 115 kb interval on Arabidopsis chromosome 1. Based on the known relationship of physical distances between orthologous segments of Arabidopsis and Brassica chromosomes, it is anticipated that the B. napus restorer locus is now mapped to sufficient resolution to permit its isolation and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bennetzen JF, Freeling M (1993) Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet 9:251–253

    Google Scholar 

  • Brown GG (1999) Unique aspects of cytoplasmic male sterility and nuclear fertility restoration in Brassica napus. J Hered 90:351–356

    Article  CAS  Google Scholar 

  • Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Budar F, Touzet P, DePaepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16

    Article  CAS  PubMed  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IA, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  CAS  PubMed  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23:81–90

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  CAS  PubMed  Google Scholar 

  • Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie DA (2002) Comparative mapping of the barley Ppd-H11 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161:825–834

    CAS  PubMed  Google Scholar 

  • Elina H (2007) Expression of a Brassica napus mitochondrial gene region associated with CMS: transcript initiation, splicing and nuclease protection. Ph.D. thesis, McGill University

  • Fan Z, Stefansson BR, Sernyk JL (1986) Maintainers and restorers for three male sterility-inducing cytoplasms in rape (Brassica napus L). Can J Plant Sci 66:229–234

    Article  Google Scholar 

  • Formanová N, Li X-Q, DePauw M, Keller WA, Landry BS, Brown GG (2006) Towards positional cloning in Brassica napus: generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Mol Biol 61:269–281

    Article  PubMed  CAS  Google Scholar 

  • Geddy R, Brown GG (2007) Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics 8:13

    Article  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  CAS  PubMed  Google Scholar 

  • Jean M, Brown GG, Landry BS (1997) Genetic mapping of nuclear fertility restorer genes for the ‘Polima’ cytoplasmic male sterility of canola (Brassica napus L.) using DNA markers. Theor Appl Genet 95:321–328

    Article  CAS  Google Scholar 

  • Kaló P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis TH, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling circle transposons. Trends Genet 23:521–529

    Article  CAS  PubMed  Google Scholar 

  • Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    Article  CAS  PubMed  Google Scholar 

  • Ku H-M, Liu J, Doganlar S, Tanksley SD (2001) Exploitation of Arabidopsis–tomato synteny to construct a high-resolution map of the ovate containing region in tomato chromosome 2. Genome 44:470–475

    Article  CAS  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li X-Q, Hameed A, Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mitochondrial gene region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34:543–552

    CAS  Google Scholar 

  • Li X-Q, Jean M, Landry BS, Brown GG (1998) Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci USA 95:10032–10037

    Article  CAS  PubMed  Google Scholar 

  • Menassa R, L’Homme Y, Brown GG (1999) Post-transcriptional and developmental regulation of a CMS-associated mitochondrial gene region by a nuclear restorer gene. Plant J 17:491–499

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  Google Scholar 

  • Parkin I, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Pelletier G, Budar F (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr Opin Biotechnol 18:121–125

    Article  CAS  PubMed  Google Scholar 

  • Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A (2004) An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 4:74–83

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna W, Bennetzen JL (2003) Genomic colinearity as a tool for gene isolation. Methods Mol Biol 236:109–122

    CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  CAS  PubMed  Google Scholar 

  • Touzet P, Budar F (2004) Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci 9:568–570

    Article  CAS  PubMed  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Stewart JM (2000) The economic and rapid method for extraction of cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Discovery and Collaborative Research and Development Grants from the Natural Sciences and Engineering Research Council (NSERC), Canada, by BASF Plant Science and by the Industrial Research Assistance Program of the National Research Council (NRC), Canada. We express thanks to Dr. Rod Wing, University of Arizona, for providing the Arabidopsis BACs and to Dr. Tom Bureau, Department of Biology, McGill University, for analysis of an Arabidopsis genome region for transposable element sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Brown.

Additional information

Communicated by C. Quiros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formanová, N., Stollar, R., Geddy, R. et al. High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers. Theor Appl Genet 120, 843–851 (2010). https://doi.org/10.1007/s00122-009-1215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1215-y

Keywords

Navigation