Skip to main content

Advertisement

Log in

Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP- and Brassica rapa-derived PCR markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new thermo-sensitive dominant genic male sterility (TSDGMS) line of Brassica napus was found and mapped in this paper. Our result will greatly accelerate the map-based cloning of the BntsMs gene.

Abstract

TE5A is a thermo-sensitive dominant genic male sterility line originating from spontaneous mutation of the inbred line TE5 in Brassica napus and provides a promising system for the development of hybrid cultivars. Genetic analysis has revealed that the BntsMs mutant is controlled by a single, dominant gene. Here, we describe the fine mapping of BntsMs using amplified fragment length polymorphism (AFLP) and intron polymorphism (IP) methodologies. We screened 1,024 primer combinations and then identified five AFLP markers linked to the BntsMs gene, two of which were successfully converted into sequence-characterised amplified region (SCAR) markers. The linkage of the markers was identified by analysing a large BC2 population of 700 recessive-fertility individuals. Two SCAR markers were found in the flanking region of the BntsMs gene at distance of 3.5 and 4.8 cm. Based on sequence information from the previously screened AFLP markers and on genome organisation comparisons of the A genome of Brassica rapa and Arabidopsis, seven IP markers linked to the BntsMs gene were developed. By analysing the 700 recessive-fertility individuals, two IP markers, IP004 and IP470, were localised to the flanking region of the BntsMs gene at a distance of 0.3 and 0.2 cm, respectively. A comparison of the B. rapa and Arabidopsis genomes revealed 27 genes of B. rapa in the flanking region of these two IP markers. It is likely that the molecular markers developed from these investigations will greatly accelerate the positional cloning of the BntsMs gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blair MW, Pedraza F, Buendia HF, Gaitan-Solis E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IAP, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  CAS  PubMed  Google Scholar 

  • Chen FX, Hu BC, Li C, Li QS, Chen WS, Zhang ML (1998) Genic studies on GMS in Brassica napus L. I. Inheritance of recessive GMS line 9012A. Acta Agron Sin 24:431–438

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dun XL, Zhou ZF, Xia SQ, Wen J, Yi B, Shen JX, Ma CZ, Tu JX, Fu TD (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68:532–545

    Article  CAS  PubMed  Google Scholar 

  • Fu TD, Tu JX (2002) Present situation and prospects on the research and utilization of hybrid rapeseed (in Chinese). In: Liu HL (ed) Analects of crop breeding. China Agricultural University Press, Beijing, pp 235–250

    Google Scholar 

  • Guo Y, Ge J, Yu C, Zhang G, Dong J, Dong Z (2012) Anatomical observation of anther development of a new thermo-sensitive genic male sterile line SP2S in Brassica napus L. Plant Physiol J 48(3):282–288

    Google Scholar 

  • Hong DF, Liu J, Yang GS, He QB (2008) Development and characterization of SCAR markers associated with a dominant genic male sterility in rapeseed. Plant Breed 127:69–73

    CAS  Google Scholar 

  • Hou GZ, Wang H, Zhang RM (1990) Genic study on genic male sterility (GMS) material No. 117A in Brassica napus L. Oil Crop China 2:7–10

    Google Scholar 

  • Hu SW, Yu CY, Zhao HX (2000) The discovery of a new kind of male sterility accession in Brassica napus L. and a primary genic study. Acta Agriculturae Boreali-occidentalis Sin 9:90–94

    Google Scholar 

  • Huang Z, Chen YL, Yi B, Xiao L, Ma CZ, Tu J, Fu TD (2007) Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet 115:113–118

    Article  CAS  PubMed  Google Scholar 

  • Ke LP, Sun YQ, Liu PW, Yang GS (2004) Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica 138:163–168

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li SL, Qian YX, Wu ZH (1985) Inheritance and utilization of genetic male sterility in rapeseed (Brassica napus L.). Acta Agric Shanghai 1(2):1–12

    Google Scholar 

  • Li SL, Qian YX, Wu ZH, Stefansson BR (1988) Genetic male sterility in rape (Brassica napus L.) conditioned by interaction of genes at two loci. Can J Plant Sci 68:1115–1118

    Article  Google Scholar 

  • Li SL, Zhou XR, Zhou ZJ, Qian YX (1990) Inheritance of genetic male sterility (GMS) and its utilization in rapeseed (Brassica napus L.). Crop Res 4(3):5–8

    Google Scholar 

  • Li SL, Zhou ZJ, Zhou XR (1995) Three-line method of genic male sterility for hybrid seed production in Brassica napus L. Acta Agric Shanghai 11:21–26

    Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead institute technical report, 3rd edn. Whitehead Technical Institute, Cambridge, MA

  • Liu ZW, Wu P, Yuan W, Zhou J, Zhou X (2006) Breeding of photo-and-temperature sensitive genic male-sterile dual-use line N196S in Brassica napus. Acta Agriculturae Universitatis Jiangxiensi. 28(5):654–657

    Google Scholar 

  • Lu GY, Yang GS, Fu TD (2004) Molecular mapping of a dominant genic male sterility gene (Ms) in rapeseed (Brassica napus L.). Plant Breed 123:262–265

    Article  CAS  Google Scholar 

  • Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathias R (1985) A new dominant gene of male sterility in rapeseed (Brassica napus L.). Z. Pflanzenzüchtg 94:170–173

    Google Scholar 

  • McCouch SR, Chen XL, Panaud O, Temnykh S, Xu YB, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  CAS  PubMed  Google Scholar 

  • Negi MS, Devic M, Delseny M, Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet 101:146–152

    Article  CAS  Google Scholar 

  • Pan T, Zeng FY, Wu SH, Zhao Y (1988) A study on breeding and application GMS line of low eruci acid in rapeseed (B. napus). Oil Crop China 3:5–8

    Google Scholar 

  • Parkin P, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (1999) Primer 3. Code available at. http://www.genome.wi.mit.edu/genome_software/other/primer3.html

  • Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Bjørnstad A, Skinnes H, Marøy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Song LQ, Fu TD, Yang GS, Tu JX, Ma CZ (2005) Genetic verification of multiple allelic gene for dominant genic male sterility in 609AB (Brassica napus L.). Acta Agron Sin 31(7):869–875

    CAS  Google Scholar 

  • Song LQ, Fu TD, Tu JX, Ma CZ, Yang GS (2006) Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet 113:55–62

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Hu C, Yu C (2009) Cytological observation of anther development of an ecological male sterile line H50S in Brassica napus L. Acta Agriculturae Boreali-Occidentalis Sinica 18(5):153–158

    Google Scholar 

  • Takagi Y (1970) Monogenic recessive male sterility in rapeseed (Brassica napus L.) induced by gamma irradiation. Z. Pflanzenzüchtg 64:242–247

    Google Scholar 

  • Tu JX, Fu TD, Zheng YL (1997) Analysis on inheritance and isolocus of the rapeseed GMS 90-2441A (B. napus L.). J Huazhong Agric Univ 16:255–258

    Google Scholar 

  • Wang H, Tang XH, Zhao ZX (2001) Genic study on ecotype genic male sterile of H90s in Brassica napus L. Chin J Oil Crop Sci 23:11–15

    Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Xia SQ, Cheng L, Zu F, Dun XL, Zhou ZF, Yi B, Wen J, Ma CZ, Shen JX, Tu JX, Fu TD (2012) Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theor Appl Genet 124:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Yi B, Chen YL, Lei SL, Tu JX, Fu TD (2006) Fine mapping of the recessive genic male- sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet 113(4):643–650

    Article  CAS  PubMed  Google Scholar 

  • Yi B, Zeng FQ, Lei S, Chen YL, Yao XQ, Zhu Y, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925–938

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Li W, Chang J, Hu S (2007) Development of a thermo- sensitive male- sterile line 373S in Brassica napus L. Chin Agric Sci Bull 23:245–248

    Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (31100190).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wu.

Additional information

Communicated by Istvan Rajcan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Li, W., Wu, Y. et al. Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP- and Brassica rapa-derived PCR markers. Theor Appl Genet 127, 1733–1740 (2014). https://doi.org/10.1007/s00122-014-2335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2335-6

Keywords

Navigation