Skip to main content
Log in

Method for the mapping of a female partial-sterile locus on a molecular marker linkage map

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The female gametophyte is an absolutely essential structure for angiosperm reproduction, and female sterility has been reported in a number of crops. In this paper, a maximum-likelihood method is presented for estimating the position and effect of a female partial-sterile locus in a backcross population using the observed data of dominant or codominant markers. The ML solutions are obtained via Bailey’s method. The process for the estimating of the recombination fractions and the viabilities of female gametes are described, and the variances of the estimates of the parameters are also presented. Application of the method is demonstrated using a set of simulated data. This method circumvents the problems of the traditional mapping methods for female sterile genes which were based on data from seed set or embryo-sac morphology and anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arthur L, Ozias-Akins P, Hanna WW (1993) Female sterile mutant in pearl millet: evidence for initiation of apospory. J Hered 84:112–115

    Google Scholar 

  • Bailey NTJ (1951) Testing the solubility of maximum likelihood equations in the routine application of scoring methods. Biometrics 7:268–274

    Article  Google Scholar 

  • Bingham ET, Hawkins-pfeiffer J (1984) Female sterility in alfalfa due to a recessive trait retarding integument development. J Hered 75:231–233

    Google Scholar 

  • Brandt S (1983) Statistical and computational methods in data analysis. Elsevier/North-Holland Inc., New York

    Google Scholar 

  • Casady AJ, Heyne EG, Weibel DE (1960) Inheritance of female sterility in sorghum. J Hered 51:35–38

    Google Scholar 

  • Daskalov S, Mihailov L (1988) A new method for hybrid seed production based on cytoplasmic male sterility combined with a lethal gene and a female sterile pollenizer in Capsicum annuum L. Theor Appl Genet 76:530–532

    Article  Google Scholar 

  • Dhesi JS (1966) An embryological study of female sterility in cotton. J Hered 57:247–248

    Google Scholar 

  • Drews GN, Lee D, Christensen CA (1998) Genetic analysis of female gametophyte development and function. Plant Cell 10:5–18

    Article  PubMed  CAS  Google Scholar 

  • Dudoit S, van der Laan MJ (2008) Multiple testing procedures with applications to genomics. Springer, New York

    Google Scholar 

  • Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Molecular Breeding 5:463–470

    Article  Google Scholar 

  • Goldman MH, Goldberg RB, Mariani C (1994) Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J 13:2976–2984

    PubMed  CAS  Google Scholar 

  • Hanna WW, Powell JB (1974) Radiation-induced female-sterile mutant in pearl millet. J Hered 65:247–249

    Google Scholar 

  • Honma S, Phatak SC (1964) A female-sterile mutant in the tomato. J Hered 55:143–145

    Google Scholar 

  • Kato KK, Palmer RG (2003a) Genetic identification of a female partial-sterile mutant in soybean. Genome 46:128–134

    Article  PubMed  CAS  Google Scholar 

  • Kato KK, Palmer RG (2003b) Molecular mapping of the male-sterile, female-sterile mutant gene (st8) in soybean. J Hered 94:425–428

    Article  PubMed  CAS  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA Gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yoshimura A (2005) Epistasis underlying female sterility detected in hybrid breakdown in a Japonica–Indica cross of rice (Oryza sativa L.). Theor Appl Genet 110:346–355

    Article  PubMed  CAS  Google Scholar 

  • Li S-C, Yang L, Deng Q-M, Wang S-Q, Wu F-Q, Li P (2006) Phenotypic characterization of a female sterile mutant in rice. J Integr Plant Biol 48:307–314

    Article  Google Scholar 

  • Liu YS, Zhu LH, Sun JS, Chen Y (2001) Mapping QTLs for defective female gametophyte development in an inter-subspecific cross in Oryza sativa L. Theor Appl Genet 102:1243–1251

    Article  CAS  Google Scholar 

  • Luo L, Xu S (2003) Mapping viability loci using molecular markers. Heredity 90:459–467

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Zhang YM, Xu S (2005) A quantitative genetics model for viability selection. Heredity 94:347–355

    Article  PubMed  CAS  Google Scholar 

  • Moore JM, Calzada JP, Gagliano W, Grossniklaus U (1997) Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol 62:35–47

    PubMed  CAS  Google Scholar 

  • Pereira TNS, Lersten NR, Palmer RG (1997) Genetic and cytological analyses of a partial-female-sterile mutant (PS-1) in soybean (Glycine max; Leguminosae). Am J Botany 84:781–791

    Article  Google Scholar 

  • Robinson-Beers K, Pruitt RE, Gasser CS (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4:1237–1249

    Article  PubMed  Google Scholar 

  • Rosellini D, Lorenzetti F, Bingham ET (1998) Quantitative ovule sterility in Medicago sativa. Theor Appl Genet 97:1289–1295

    Article  Google Scholar 

  • Stroman GN (1941) A heritable female-sterile type in cotton. J Hered 32:167–168

    Google Scholar 

  • Vogl C, Xu S (2000) Multipoint mapping of segregation distorting loci using molecular markers. Genetics 155:1439–1447

    PubMed  CAS  Google Scholar 

  • Wan H, Mann TJ (1967) Inheritance of a female sterility in tobacco. J Hered 58:85–87

    Google Scholar 

  • Wang C, Zhu C, Zhai H, Wan J (2005) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res 86:97–106

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1990) Genetic data analysis-methods for discrete population genetic data. Sinauer Associates Inc, Sunderland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Walsh.

Additional information

Communicated by M. Sillanpaa.

Appendix

Appendix

Derivation of the formula:

$$ L(r_{1} ,r_{2} ,t) = {\frac{n!}{{n_{1} !n_{2} !n_{3} !n_{4} !}}}p_{1}^{{n_{1} }} p_{2}^{{n_{2} }} p_{3}^{{n_{3} }} p_{4}^{{n_{4} }} $$
$$ \ln L = \ln {\frac{n!}{{n_{1} !n_{2} !n_{3} !n_{4} !}}} + n_{1} \ln p_{1} + n_{2} \ln p_{2} + n_{3} \ln p_{3} + n_{4} \ln p_{4} $$
$$ \begin{gathered} {\mathbf{X}} = (x_{ij} ) = \left[ \begin{gathered} {\frac{{\partial p_{1} }}{{\partial r_{1} }}}\quad {\frac{{\partial p_{1} }}{{\partial r_{2} }}}\quad {\frac{{\partial p_{1} }}{\partial t}} \hfill \\ {\frac{{\partial p_{2} }}{{\partial r_{1} }}}\quad {\frac{{\partial p_{2} }}{{\partial r_{2} }}}\quad {\frac{{\partial p_{2} }}{\partial t}} \hfill \\ {\frac{{\partial p_{3} }}{{\partial r_{1} }}}\quad {\frac{{\partial p_{3} }}{{\partial r_{2} }}}\quad {\frac{{\partial p_{3} }}{\partial t}} \hfill \\ {\frac{{\partial p_{4} }}{{\partial r_{1} }}}\quad {\frac{{\partial p_{4} }}{{\partial r_{2} }}}\quad {\frac{{\partial p_{4} }}{\partial t}} \hfill \\ \end{gathered} \right] \hfill \\ = \left[\begin{gathered} - (1 - r_{2} )(1 - t) + r_{2} t\quad - (1 - r_{1} )(1 - t) + r_{1} t\quad - (1 - r_{1} )(1 - r_{2} ) + r_{1} r_{2} \hfill \\ (1 - r_{2} )t - r_{2} (1 - t)\quad(1 - r_{1} )(1 - t) - r_{1} t\quad r_{1} (1 - r_{2} ) - (1 - r_{1} )r_{2} \hfill \\ (1 - r_{2} )(1 - t) - r_{2} t\quad (1 - r_{1} )t - r_{1} (1 - t)\quad - r_{1} (1 - r_{2} ) + (1 - r_{1} )r_{2} \hfill \\ - (1 - r_{2} )t + r_{2} (1 - t)\quad - (1 - r_{1} )t + r_{1} (1 - t)\quad (1 - r_{1} )(1 - r_{2} ) - r_{1} r_{2} \hfill \\ \end{gathered} \right] \hfill \\ \end{gathered} $$
$$ S_{{r_{1} }} = {\frac{\partial \ln L}{{\partial r_{1} }}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} - {\frac{{n_{3} }}{{p_{3} }}}} \right)x_{11} + \left( {{\frac{{n_{2} }}{{p_{2} }}} - {\frac{{n_{4} }}{{p_{4} }}}} \right)x_{21} $$
$$ S_{{r_{2} }} = {\frac{\partial \ln L}{{\partial r_{2} }}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} - {\frac{{n_{2} }}{{p_{2} }}}} \right)x_{12} + \left( {{\frac{{n_{3} }}{{p_{3} }}} - {\frac{{n_{4} }}{{p_{4} }}}} \right)x_{32} $$
$$ S_{t} = {\frac{\partial \ln L}{\partial t}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} - {\frac{{n_{4} }}{{p_{4} }}}} \right)x_{13} + \left( {{\frac{{n_{2} }}{{p_{2} }}} - {\frac{{n_{3} }}{{p_{3} }}}} \right)x_{23} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial r_{1} r_{1} }}} = - \left( {{\frac{{n_{1} }}{{p_{1}^{2} }}} + {\frac{{n_{3} }}{{p_{3}^{2} }}}} \right)x_{11}^{2} - \left( {{\frac{{n_{2} }}{{p_{2}^{2} }}} + {\frac{{n_{4} }}{{p_{4}^{2} }}}} \right)x_{21}^{2} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial r_{1} r_{2} }}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} - {\frac{{n_{2} }}{{p_{2} }}} - {\frac{{n_{3} }}{{p_{3} }}} + {\frac{{n_{4} }}{{p_{4} }}}} \right) + \left( {n_{2} {\frac{{x_{21} }}{{p_{2}^{2} }}} - n_{1} {\frac{{x_{11} }}{{p_{1}^{2} }}}} \right)x_{12} + \left( {n_{3} {\frac{{x_{11} }}{{p_{3}^{2} }}} - n_{4} {\frac{{x_{21} }}{{p_{4}^{2} }}}} \right)x_{32} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial r_{1} t}}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} + {\frac{{n_{2} }}{{p_{2} }}} - {\frac{{n_{3} }}{{p_{3} }}} - {\frac{{n_{4} }}{{p_{4} }}}} \right) - \left( {n_{1} {\frac{{x_{11} }}{{p_{1}^{2} }}} + n_{4} {\frac{{x_{21} }}{{p_{4}^{2} }}}} \right)x_{13} - \left( {n_{2} {\frac{{x_{21} }}{{p_{2}^{2} }}} + n_{3} {\frac{{x_{11} }}{{p_{3}^{2} }}}} \right)x_{23} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial r_{2} r_{1} }}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} - {\frac{{n_{2} }}{{p_{2} }}} - {\frac{{n_{3} }}{{p_{3} }}} + {\frac{{n_{4} }}{{p_{4} }}}} \right) + \left( {n_{2} {\frac{{x_{21} }}{{p_{2}^{2} }}} - n_{1} {\frac{{x_{11} }}{{p_{1}^{2} }}}} \right)x_{12} + \left( {n_{3} {\frac{{x_{11} }}{{p_{3}^{2} }}} - n_{4} {\frac{{x_{21} }}{{p_{4}^{2} }}}} \right)x_{32} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial r_{2} r_{2} }}} = - \left( {{\frac{{n_{1} }}{{p_{1}^{2} }}} + {\frac{{n_{2} }}{{p_{2}^{2} }}}} \right)x_{12}^{2} - \left( {{\frac{{n_{3} }}{{p_{3}^{2} }}} + {\frac{{n_{4} }}{{p_{4}^{2} }}}} \right)x_{32}^{2} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial r_{2} t}}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} - {\frac{{n_{2} }}{{p_{2} }}} + {\frac{{n_{3} }}{{p_{3} }}} - {\frac{{n_{4} }}{{p_{4} }}}} \right) - \left( {n_{1} {\frac{{x_{12} }}{{p_{1}^{2} }}} + n_{4} {\frac{{x_{32} }}{{p_{4}^{2} }}}} \right)x_{13} + \left( {n_{2} {\frac{{x_{12} }}{{p_{2}^{2} }}} + n_{3} {\frac{{x_{32} }}{{p_{3}^{2} }}}} \right)x_{23} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial tr_{1} }}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} + {\frac{{n_{2} }}{{p_{2} }}} - {\frac{{n_{3} }}{{p_{3} }}} - {\frac{{n_{4} }}{{p_{4} }}}} \right) - \left( {n_{1} {\frac{{x_{11} }}{{p_{1}^{2} }}} + n_{4} {\frac{{x_{21} }}{{p_{4}^{2} }}}} \right)x_{13} - \left( {n_{2} {\frac{{x_{21} }}{{p_{2}^{2} }}} + n_{3} {\frac{{x_{11} }}{{p_{3}^{2} }}}} \right)x_{23} $$
$$ {\frac{{\partial^{2} \ln L}}{{\partial tr_{2} }}} = \left( {{\frac{{n_{1} }}{{p_{1} }}} - {\frac{{n_{2} }}{{p_{2} }}} + {\frac{{n_{3} }}{{p_{3} }}} - {\frac{{n_{4} }}{{p_{4} }}}} \right) - \left( {n_{1} {\frac{{x_{12} }}{{p_{1}^{2} }}} + n_{4} {\frac{{x_{32} }}{{p_{4}^{2} }}}} \right)x_{13} + \left( {n_{2} {\frac{{x_{12} }}{{p_{2}^{2} }}} + n_{3} {\frac{{x_{32} }}{{p_{3}^{2} }}}} \right)x_{23} $$
$$ {\frac{{\partial^{2} \ln L}}{\partial tt}} = - \left( {{\frac{{n_{1} }}{{p_{1}^{2} }}} + {\frac{{n_{4} }}{{p_{4}^{2} }}}} \right)x_{13}^{2} - \left( {{\frac{{n_{2} }}{{p_{2}^{2} }}} + {\frac{{n_{3} }}{{p_{3}^{2} }}}} \right)x_{23}^{2} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Walsh, B. Method for the mapping of a female partial-sterile locus on a molecular marker linkage map. Theor Appl Genet 119, 1085–1091 (2009). https://doi.org/10.1007/s00122-009-1110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1110-6

Keywords

Navigation