Skip to main content
Log in

Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. oryzae

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Plant disease resistant (R) genes are frequently clustered in the genome. The diversity of members in a complex R-gene family may provide variation in resistance specificity. Rice Xa3/Xa26, conferring resistance to Xanthomonas oryzae pv. oryzae (Xoo) encodes a leucine-rich repeat (LRR) receptor kinase-type protein and belongs to a multigene family, consisting of Xa3/Xa26, MRKa, MRKc and MRKd in rice cultivar Minghui 63. MRKa and MRKc are intact genes, while MRKd is a pseudogene. Complementary analyses showed that MRKa and MRKc could not mediate resistance to Xoo when regulated by their native promoters, but MRKa not MRKc conferred partial resistance to Xoo when regulated by a strong constitutive promoter. Plants carrying truncated XA3/XA26, which lacked the kinase domain, were compromised in their resistance to Xoo. However, the kinase domain of MRKa could partially restore the function of the truncated XA3/XA26 in resistance. MRKa and MRKc showed similar expression pattern as Xa3/Xa26, which expressed only in the vascular systems of different tissues. The expressional characteristic of MRKa and MRKc perfectly fits the function of genes conferring resistance to Xoo, a vascular pathogen. These results suggest that although MRKa and MRKc cannot mediate bacterial blight resistance nowadays, they may be once effective genes for Xoo resistance. Their expressional characteristic and sequence similarity to Xa3/Xa26 will provide templates for generating novel recognition specificity to face the evolution of Xoo. In addition, both LRR and kinase domains encoded by Xa3/Xa26 and MRKa are the functional determinants and MRKa-mediated resistance is dosage-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn SN, Kim YK, Han SS, Choi HC, Moon HP, McCouch SR (1996) Molecular mapping of a gene for resistance to a Korean isolate of rice blast. Rice Genet Newsl 13:74–76

    Google Scholar 

  • Andaya CB, Ronald PC (2003) A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol 62:203–208

    Article  CAS  Google Scholar 

  • Cai D, Kleine M, Kifle S, Joachim HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Vina M, Inukai T (1999) Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theor Appl Genet 98:1046–1053

    Article  CAS  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  PubMed  CAS  Google Scholar 

  • Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Gene Dev 20:1250–1255

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JD (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic in leucine-rich repeat copy number. Plant Cell 10:1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  PubMed  CAS  Google Scholar 

  • He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288:2360–2363

    Article  PubMed  CAS  Google Scholar 

  • Hwang CF, Williamson VM (2003) Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J 34:585–593

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ, Zhang Q (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540–547

    Article  PubMed  CAS  Google Scholar 

  • Lin XH, Zhang DP, Xie YF, Gao HP, Zhang Q (1996) Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology 86:1156–1159

    Article  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Hammond-Kosack KE, Goldstein C, Thomas CM, Jones DA, Harrison K, Wulff BBH, Jones JDG (1997) Novel resistance specificities result from sequence exchange between tandemly repeated genes at the Cf4/Cf9 locus of tomato. Cell 91:821–832

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact. doi: 10.1094/MPMI-20-0-0000

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Pi LY, Wang GL, Gardner J, Holsten T, Ronald PC (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Yang Z, Wang S, Zhang Q (2003) Identification of a 47 kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet 106:683–687

    PubMed  CAS  Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encoding a LRR receptor kinase-like protein. Plant J 37:517–527

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Cao Y, Wang S (2006) Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol 140:998–1008

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Xie M, Kim YJ, Zhou J, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15–29

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JD (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporum fulvum identified sequences that determine recognition specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224

    Article  PubMed  CAS  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Inter Rev Cyto 234:1–46

    Article  CAS  Google Scholar 

  • Wang GL, Ruan DL, Song WY, Sideris S, Chen LL, Pi LY, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–779

    Article  PubMed  CAS  Google Scholar 

  • Wang ZX, Yamanouchi U, Katayose Y, Sasaki T, Yano M (2001) Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences. Plant Mol Biol 47:653–661

    Article  PubMed  CAS  Google Scholar 

  • Wen N, Chu Z, Wang S (2003) Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics 269:331–339

    Article  PubMed  CAS  Google Scholar 

  • Wulff BB, Thomas CM, Smoker M, Grant M, Jones JD (2001) Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell 13:255–272

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Cao Y, Xu C, Li X, Wang S (2006) Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 113:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Xu ZG, Sun QM, Liu FQ, Chen ZY, Hu BS, Guo YH, Liu YF, Liu HX (2004) Race monitoring of rice bacterial blight (Xanthomonas oryzae pv. oryzae) in China. Chin J Rice Sci 18:469–472

    Google Scholar 

  • Yang Z, Sun X, Wang S, Zhang Q (2003) Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet 106:1467–1472

    PubMed  CAS  Google Scholar 

  • Yu ZH, Mackill DJ, Bonman JM, McCouch SR, Guiderdoni E, Notteghem JL, Tanksley SD (1996) Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor App Genet 93:859–863

    CAS  Google Scholar 

  • Yuan B, Shen X, Li X, Xu C, Wang S (2007) Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta (in press). doi:10.1007/s00425-007-0541-z

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Program on the Development of Basic Research in China, the National Program of High Technology Development of China, and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Wang.

Additional information

Communicated by M. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2007_615_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Duan, L., Li, H. et al. Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. oryzae . Theor Appl Genet 115, 887–895 (2007). https://doi.org/10.1007/s00122-007-0615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0615-0

Keywords

Navigation