Skip to main content
Log in

Genetic dissection of maize seedling traits in an IBM Syn10 DH population under the combined stress of lead and cadmium

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The heavy metals lead and cadmium have become important pollutants in the environment, which exert negative effects on plant morphology, growth and photosynthesis. It is particularly significant to uncover the genetic loci and the causal genes for lead and cadmium tolerance in plants. This study used an IBM Syn10 DH population to identify the quantitative trait loci (QTL) controlling maize seedling tolerance to lead and cadmium by linkage mapping. The broad-sense heritability of these seedling traits ranged from 65.8–97.3% and 32.0–98.8% under control (CK) and treatment (T) conditions, respectively. A total of 53 and 64 QTL were detected under CK and T conditions, respectively. Moreover, 42 QTL were identified using lead and cadmium tolerance coefficient (LCTC). Among these QTL, five and two major QTL that explained > 10% of phenotypic variation were identified under T condition and using LCTC, respectively. Furthermore, eight QTL were simultaneously identified by T and LCTC, explaining 5.23% to 9.21% of the phenotypic variations. Within these major and common QTL responsible for the combined heavy metal tolerance, four candidate genes (Zm00001d048759, Zm00001d004689, Zm00001d004843, Zm00001d033527) were previously reported to correlate with heavy metal transport and tolerance. These findings will contribute to functional gene identification and molecular marker-assisted breeding for improving heavy metal tolerance in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Ghani AH, Sanchez DL, Kumar B, Lubberstedt T (2016) Paper roll culture and assessment of maize root parameters. Bio-Protoc 6(18):e1926

    Article  Google Scholar 

  • Alloway (2015) Heavy metals in soils. Mineral Mag 55(8):1318–1324

    Google Scholar 

  • Austin DF, Lee M (1996) Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 39(5):957–968

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718

    Article  PubMed  CAS  Google Scholar 

  • Burton AL, Johnson JM, Foerster JM, Hirsch CN, Buell CR et al (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 127(11):2293–2311

    Article  PubMed  Google Scholar 

  • Canadas EM, Ballesteros MV et al (2014) Does gypsum influence seed germination? Turk J Bot 38(1):141–147

    Article  Google Scholar 

  • Chen H, Zheng C, Wang S, Tu C (2000) Combined pollution and pollution index of heavy metals in red soil. Pedosphere 10(2):117–124

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N et al (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144(2):1052–1065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Y, Cao J, Ni L et al (2013) ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. J Exp Bot 4:871–884

    Article  CAS  Google Scholar 

  • Du H, Ning L, He B et al (2020) Cross-species root transcriptional network analysis highlights conserved modules in response to nitrate between maize and sorghum. Int J Mol Sci 21(4):1445

    Article  PubMed Central  CAS  Google Scholar 

  • Dudley JW, Dijkhuizen A, Paul C, Coates ST, Rocheford TR (2004) Effects of random mating on marker–QTL associations in the cross of the Illinois high protein × Illinois low protein maize strains. Crop Sci 44(4):1419–1428

    Article  CAS  Google Scholar 

  • Dutilleul C, Jourdain A, Bourguignon J, Hugouvieux V (2008) The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol 147(1):239–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang F, Wang M, Zhu Q et al (2016) DkMYB6 is involved in persimmon fruit deastringency, via transcriptional activation on both DkPDC and DkERF. Postharvest Biol Technol 111:167–177

    Article  CAS  Google Scholar 

  • Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J Plant Physiol 159(3):265–271

    Article  CAS  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):1–21

    Article  CAS  Google Scholar 

  • Gao Q, Yang Z, Yong Z et al (2012) Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene 498(2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Gu C, Wen Y, Wu L et al (2020) Arsenite-induced transgenerational glycometabolism is associated with up-regulation of H3K4me2 via inhibiting spr-5 in caenorhabditis elegans. Toxicol Lett 326:11–17

    Article  PubMed  CAS  Google Scholar 

  • Gui J, Zheng S, Chang L et al (2016) OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell 38(2):201–213

    Article  PubMed  CAS  Google Scholar 

  • Hallauer AR, Carena MJ, Mirandailho JD (2010) Quantitative genetics in maize breeding, vol 6. Springer Science & Business Media, Berlin

    Google Scholar 

  • Hochholdinger F (2009) The maize root system: morphology, anatomy, and genetics[M]//Handbook of maize: its biology. Springer, New York, NY, pp 145–60

  • Hoopes GM, Hamilton JP, Wood JC et al (2019) An updated gene atlas for maize reveals organ‐specific and stress‐induced genes[J]. Plant J 97(6):1154–1167

  • Hoppe DC, McCully ME, Wenzel CL (1986) The nodal roots of Zea: their development in relation to structural features of the stem. Can J Bot 64(11):2524–2537

    Article  Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y et al (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21(2):655–667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huisman MT, Chhatta AA, Tellingen OV et al (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 116(5):824–829

    Article  PubMed  CAS  Google Scholar 

  • Jang MG, Kim YJ, Jang GH et al (2014) Ectopic overexpression of the aluminum-induced protein gene from Panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis. Plant Cell 119(1):95–106

    CAS  Google Scholar 

  • Jansen C, Zhang Y, Liu H, Gonzalez-Portilla PJ, Lauter N et al (2015) Genetic and agronomic assessment of cob traits in corn under low and normal nitrogen management conditions. Theor Appl Genet 128(7):1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Kirch HH, Schlingensiepen SK et al (2005) Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. Plant Mol Biol 57(3):315–332

    Article  PubMed  CAS  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis 1. Crop Sci 25(1):192–194

    Article  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200(2):241–250

    Article  CAS  Google Scholar 

  • Laurie S, Feeney KA, Maathuis F et al (2010) A role for HKT1 in sodium uptake by wheat roots. Plant J 32(2):139–149

    Article  Google Scholar 

  • Leene JV, Blomme J, Kulkarni SR et al (2016) Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. J Exp Bot 67(19):5825–5840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Liu C, Zhou L, Zhao Z, Li Y et al (2018a) Molecular and functional characterization of the magnesium transporter gene ZmMGT12 in maize. Gene 665:167–173

    Article  PubMed  CAS  Google Scholar 

  • Li H, Liu C, Zhou L et al (2018b) Molecular and functional characterization of the magnesium transporter gene ZmMGT12 in maize[J]. Gene 665:167–173

  • Li S, Lin Y, Wang P et al (2018c) Histone acetylation cooperating with AREB1 transcription factor regulates drought response and tolerance in Populus trichocarpa. Plant Cell 31(3):437

    Google Scholar 

  • Lima MDLA, de Souza CL, Bento DAV, De Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17(3):227–239

    Article  Google Scholar 

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y et al (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127(5):1019–1037

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Ji et al (2015) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207(3):692–709

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhang L, Wang J, Li C, Zeng X et al (2017a) Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population. Front Plant Sci 8:813

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Le L, Wang X et al (2017b) Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci 18(2):209

    Article  PubMed Central  CAS  Google Scholar 

  • Liu Q, Luo L, Wang X, Shen Z, Zheng L (2017c) Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci 18(2):209

    Article  PubMed Central  CAS  Google Scholar 

  • Ma L, Guan Z, Zhang Z, Zhang X, Zhang Y et al (2018) Identification of quantitative trait loci for leaf-related traits in an IBM Syn10 DH maize population across three environments. Plant Breed 137(2):127–138

    Article  CAS  Google Scholar 

  • Ma L, Qing C, Frei U, Shen Y, Lübberstedt T (2020) Association mapping for root system architecture traits under two nitrogen conditions in germplasm enhancement of maize doubled haploid lines. Crop J 8(2):213–226

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28(1):67–77

    Article  PubMed  CAS  Google Scholar 

  • McCouch S R, Xiao J (2019) From Malthus to molecular mapping: prospects for the utilization of genome analysis to enhance the world food supply[M]//Molecular dissection of complex traits. CRC Press pp 267–278

  • Miller L, Houghton JA (1945) The microKjeldahl determination of the nitrogen content of amino acids and proteins. J Biol Chem 169:373–383

    Article  Google Scholar 

  • Młodzińska E, Kłobus G, Christensen MD et al (2015) The plasma membrane H+-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Physiol Plant 154(2):270–282

    Article  PubMed  CAS  Google Scholar 

  • Nie S, Huang S, Zhang S et al (2013) Later Effects of Various Heavy Metal Stress on Maize Grain Yields in Wheat-Maize Rotation Systems [J][J]. Acta Agriculturae Boreali-Sinica 4

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T et al (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1(1):1–11

    Article  CAS  Google Scholar 

  • Pace J, Lee N, Naik HS, Ganapathysubramanian B, Lübberstedt T (2014) Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PLoS ONE 9(9):108255

    Article  CAS  Google Scholar 

  • Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genom 16(1):47

    Article  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169(2):239–246

    Article  CAS  Google Scholar 

  • Park Y, Xu ZY, Kim SY et al (2016) Spatial regulation of ABCG25, an ABA exporter, is an important component of the mechanism controlling cellular ABA levels. Plant Cell 28:2528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng H, He X, Gao J, Ma H, Zhang Z et al (2015) Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach. Biochem Biophys Res Commun 464(4):1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J et al (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16(1):7–20

    CAS  Google Scholar 

  • Rana RM, Shinan D, Haijuan T, Fiaz A, Hongsheng Z (2012) Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). J Exp Bot 63(16):6003

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1987) Compartmental efflux analysis and removal of extracellular cadmium from roots. Plant Physiol 1:62–65

    Article  Google Scholar 

  • Sanchez DL, Liu S, Ibrahim R, Blanco M, Lübberstedt T (2018) Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci 268:30–38

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126

    Article  PubMed  CAS  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K et al (2008) Lead stress effects on physiobiochemical activities of higher plants. Reviews of environmental contamination and toxicology, vol 196. Springer, New York, pp 73–93

    Google Scholar 

  • Shen Y, Zhang Y, Chen J, Lin H, Zhao M et al (2013) Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol Plant 147(3):270–282

    Article  PubMed  CAS  Google Scholar 

  • Shung CY, Sunter G (2007) AL1-dependent repression of transcription enhances expression of Tomato golden mosaic virus AL2 and AL3. Virology 364(1):112–122

    Article  PubMed  CAS  Google Scholar 

  • Si L, Zhang J, Hussain A et al (2021) Accumulation and translocation of food chain in soil-mulberry (Morus alba L.)-silkworm (Bombyx mori) under single and combined stress of lead and cadmium. Ecotoxicol Environ Saf 208:111582

    Article  PubMed  CAS  Google Scholar 

  • Tian XR , Wu H , Li J et al (2015) Heavy Metal Accumulation and Antioxidative System Responses of Plagiomnium acutum Under Combined Cadmium and Lead Stresses[J]. J Agro-Environ Sci 34(5):844–851

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M et al (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89(7):941–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villicaña C, Warner N et al (2016) Antiporter NHX2 differentially induced in Mesembryanthemum crystallinum natural genetic variant under salt stress. Plant Cell Tissue Organ Cult 124(2):361–375

    Article  CAS  Google Scholar 

  • Virlouvet L (2011) Identification and characterization of genes involved in the variation of quantitative characteristics affected by drought in maize[D]. University of Paris Sud-Paris XI

  • Wang S, Basten C J, Zeng Z B (2005) Windows QTL cartographer version 2.5. Statistical genetics[J]

  • Wei Y, An Z, Zou Z et al (2015) The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife 4:4

    Article  Google Scholar 

  • Williams CG, Goodman MM, Stuber CW (1995) Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics 141(4):1573–1581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia T, Xiao D et al (2012) Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS ONE 7(5):e37217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia X, Fan X, Wei J et al (2014) Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot 66(1):317

    Article  PubMed  CAS  Google Scholar 

  • Xia S, Deng R, Zhang Z, Liu C, Shi G (2016) Variations in the accumulation and translocation of cadmium among pak choi cultivars as related to root morphology. Environ Sci Pollut Res 23(10):9832–9842

    Article  CAS  Google Scholar 

  • Xu MY, Rocha P, Man LW et al (2011) Rice gene OsDSR-1 promotes lateral root development in arabidopsis under high-potassium conditions. J Plant Biol 54(3):180–189

    Article  CAS  Google Scholar 

  • Ying C, Ruidong H, Wenchun J, Zhiqiang C (2005) Effect of heavy metal lead and cadmium on grain quality of maize. Yournal Shenyang Agric Univ 36(2):218–220

    Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34(1):479–501

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chen K, Pang Y, Naveed SA, Zhao X et al (2017) QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. BMC Genomics 18(1):828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Zhu Q, Yu H, Li L, Zhang G et al (2019) Comprehensive analysis of the cadmium tolerance of abscisic acid-, stress-and ripening-induced proteins (ASRs) in maize. Int J Mol Sci 20(1):133

    Article  PubMed Central  CAS  Google Scholar 

  • Zhao X, Cao Y, Li Y, Hu S, Pan G et al (2018a) Identification of QTL and candidate genes for Pb accumulation in maize at maturity stage. Maydica 61(2):9

    Google Scholar 

  • Zhao X, Luo L, Cao Y, Liu Y, Li Y et al (2018b) Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics 19(1):1–13

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang H, Fu Z, Chen H, Lin Y et al (2018c) Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method. Plant Biotechnol J 16(5):1085–1093

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous reviewers for their comments on the manuscript. We would like to thank Michael Lee (Iowa State University) for providing the IBMSyn10 DH population. This work is supported by the National Natural Science Foundation of China (31871637 and 32001500).

Author information

Authors and Affiliations

Authors

Contributions

YS, LM, GP and TL conceived and designed the experiments; FH and XZ performed the experiments; FH and PL analyzed the data; GY and CZ contributed reagents, materials and analysis tools, respectively; FH and YS wrote the paper.

Corresponding authors

Correspondence to Langlang Ma or Yaou Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human or animal rights

This study does not include human or animal subjects.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 4382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, F., Zhou, X., Liu, P. et al. Genetic dissection of maize seedling traits in an IBM Syn10 DH population under the combined stress of lead and cadmium. Mol Genet Genomics 296, 1057–1070 (2021). https://doi.org/10.1007/s00438-021-01800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01800-2

Keywords

Navigation