Skip to main content
Log in

High-resolution genetic and physical map of the Rvi1 (Vg) apple scab resistance locus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Apple scab, caused by the fungal pathogen V. inaequalis, is one of the most prejudicial diseases in apple (Malus × domestica Borkh.). At least 17 monogenic resistances against this pathogen have been identified in the Malus genus, but only two, Rvi6 (Vf) and Rvi15 (Vr2), have been cloned and functionally characterized so far. Here, we describe the first steps of the cloning of a new scab resistance gene, Rvi1 (Vg). This gene is carried by the well-known cultivar ‘Golden Delicious’ and confers specific resistance against V. inaequalis strains carrying the AvrRvi1 avirulence factor. With a fine mapping approach on a population of 1,983 individuals, we developed SSR markers tightly linked to the Rvi1 gene. Sequencing of two bacterial artificial chromosome (BAC) clones covering, respectively, the Rvi1 apple scab resistant and susceptible allele, allowed the identification of a 110-kilo base pairs (kbps) sequence flanked by two linked markers (Vg12- and Vg15-SSR). Open reading frames were predicted on these BACs: four TIR–NBS–LRR (TNL) putative genes, a putative TNL pseudogene and one serine/threonine protein phosphatase 2A were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alignan M, Hewezi T, Petitprez M, Dechamp-Guillaume G, Gentzbittel L (2006) A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii. New Phytol 170:523–536

    Article  CAS  PubMed  Google Scholar 

  • Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host-parasite coevolutionary conflict between Arabidopsis and Downy mildew. Science 306:1957–1960

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Mol Breed 31:429–440

    Article  CAS  Google Scholar 

  • Ballesteros I, Dominguez T, Sauer M, Paredes P, Duprat A, Rojo A, Sanmartin M, Sanchez-Serrao JJ (2013) Specialized functions of the PP2A subfamily II catalytic subunits PP2A-C3 and PP2A-C4 in the distribution of auxin fluxes and development in Arabidopsis. Plant J 73:862–872

    Article  CAS  PubMed  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bénaouf G, Parisi L (2000) Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    Article  PubMed  Google Scholar 

  • Blakeslee JJ, Zhou HW, Heath JT, Skottke KR, Barrios JA, Liu SY, DeLong A (2008) Specificity of RCN1-mediated protein phosphatase 2A regulation in meristem organization and stress response in roots. Plant Physiol 146:539–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JDG (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10:1847–1860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowen J, Mesarich C, Bus V, Beresford R, Plummer K, Templeton M (2010) Venturia inaequalis: the causal agent of apple scab. Mol Plant Pathol 12:105–122

    Article  PubMed  Google Scholar 

  • Broggini GAL, Le Cam B, Parisi L, Wu C, Zhang HB, Gessler C, Patocchi A (2007) Construction of a contig of BAC clones spanning the region of the apple scab avirulence gene AvrVg. Fungal Genet Biol 44:44–51

    Article  CAS  PubMed  Google Scholar 

  • Broggini GAL, Bus VGM, Parravicini G, Kumar S, Groenwold R, Gessler C (2011) Genetic mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of Venturia inaequalis. Fungal Genet Biol 48:166–176

    Article  CAS  PubMed  Google Scholar 

  • Brun H, Chevre AM, Fitt BD, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    Article  PubMed  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structure in human genomic DNA. J Mol Biol 268:78–94

    Article  CAS  PubMed  Google Scholar 

  • Bus V, Rikkerink E, Caffier V, Durel CE, Plummer K (2011) Revision of the Nomenclature of the Differential Host-Pathogen Interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  CAS  PubMed  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  CAS  PubMed  Google Scholar 

  • Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cova V, Paris R, Passerotti S, Zini E, Gessler C, Pertot I, Loi N, Musetti R, Komjanc M (2010) Mapping and functional analysis of four apple receptor-like protein kinases related to LRPKm1 in HcrVf2-transgenic and wild-type apple plants. Tree Genet Genomes 6:389–403

    Article  Google Scholar 

  • Durel CE, van de Weg E, Venisse JS, Parisi L (2000) Localisation of a major gene for scab resistance on the European genetic map of the Prima × Fiesta cross. OILB/WPRS Bull 23:245–248

    Google Scholar 

  • Durel CE, Calenge F, Parisi L, Van de Weg WE, Kodde LP, Liebhard R, Gessler C, Thiermann M, Dunemann F, Gennari F, Tartarini S (2004) An overview of the position and robustness of scab resistance QTLs and major genes by aligning genetic maps of five apple progenies. Acta Hort 663:135–140

    CAS  Google Scholar 

  • Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinase of trichoderma atroviride induce scab resistance and metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504

    Article  CAS  PubMed  Google Scholar 

  • Galli P, Patocchi A, Broggini GAL, Gessler C (2010) The Rvi15 (Vr2) apple scab resistance locus contains three TIR–NBS–LRR genes. Mol Plant Microbe Interact 23:608–617

    Article  CAS  PubMed  Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL, Chagne D, Rikkerink EHA (2006) Apple. In: Kole C (ed) Fruits and nuts, vol 4. Springer, Berlin, pp 1–62 (Genome mapping and molecular breeding in plants)

    Chapter  Google Scholar 

  • Gessler C, Pertot I (2012) Vf scab resistance of Malus. Trees Struct Funct 26:95–108

    Article  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:1–31

    Article  Google Scholar 

  • Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8(5):e1002684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jha G, Thakur K, Thakur P (2009) The Venturia–apple pathosystem: pathogenicity mechanisms and plant defense responses. J Biomed Biotechnol 2009:680160

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones AL, Aldwinckle HS (1990) Compendium of apple and pear diseases. APS Press, St. Paul

    Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849–2861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Le Cam B, Parisi L, Devaux M et al (1999) Identification and characterization of molecular markers linked to the avirulence AvrVg of Venturia inaequalis. In: Proceedings of the 9th international congress of molecular plant–microbe interactions, Amsterdam, The Netherlands

  • Lee S, Lee D (2005) Expression of MbR4, a TIR-NBS type of apple R gene, confers resistance to bacterial spot disease in Arabidopsis. J Plant Biol 48:220–228

    Article  CAS  Google Scholar 

  • Lee S, Choi YJ, Lee D (2007) Ectopic expression of apple MbR7 gene induced enhanced resistance to transgenic Arabidopsis plant against a virulent pathogen. J Microbiol Biotechnol 17(1):130–137

    CAS  PubMed  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, van de Weg WE, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Malnoy M, Venisse JS, Chevreau E (2005) Expression of a bacterial effector, Harpin NEa, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49

    Article  Google Scholar 

  • Malnoy M, Reynoird JP, Borejsza-Wysocka EE, Aldwinckle HS (2006) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia ineaqualis and Erwinia amylovora in transgenic apple (Malus × domestica). Transgenic Res 15:83–93

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Over-expression of the apple gene MpNPR1 causes increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20:1568–1580

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus × domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433

    Article  Google Scholar 

  • Malnoy M, Martens S, Norelli JL, Barny MA, Sundin G, Smits THM, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494

    Article  CAS  PubMed  Google Scholar 

  • Maor R, Shirasu K (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 8(4):399–404

    Article  CAS  PubMed  Google Scholar 

  • Mueller AN, Ziemann S, Treitschke S, Assmann D, Doehlemann G (2013) Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog. doi:10.1371/journal.ppat

    Google Scholar 

  • Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:W433–W437

    Article  PubMed Central  PubMed  Google Scholar 

  • País SM, Téllez-Iñón MT, Capiati D (2009) Serine/threonine protein phosphatases type 2A and their roles in stress signaling. Plant Signal Behav 4(11):1013–1015

    Article  PubMed Central  PubMed  Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199

    Article  CAS  PubMed  Google Scholar 

  • Parisi L, Lespinasse Y (1996) Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp). Plant Dis 80:1179–1183

    Article  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Kruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parisi L, Fouillet V, Schouten HJ, Groenwold R, Laurens F, Didelot F, Evans K, Fischer C, Gennari F, Kemp H, Lateur M, Patocchi A, Thissen J, Tsipouridis C (2004) Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Hort 663:107–113

    Google Scholar 

  • Parker JE, Coleman MJ, Szabo V, Fros LN, Schmidt R, vander Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr(2): a new apple scab resistance gene. Theor Appl Genet 109:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of NBS resistance genes analogues (RGAs) in apple (Malus x domestica Borkh.) and the evolutionary history of the Rosaceae family. PLoS ONE 9:e83844

    Article  PubMed Central  PubMed  Google Scholar 

  • Pernas M, Garcia-Casado G, RoJo E, Solano R, Samchez-Serrano JJ (2007) A protein phosphatase 2A catalytic subunit is a negative regulator of abscisic acid signalling. Plant J 51:763–778

    Article  CAS  PubMed  Google Scholar 

  • Rafiqi M, Bernoux M, Ellis JG, Dodds PN (2009) In the trenches of plant pathogen recognition: role of NB-LRR proteins. Semin Cell Dev Biol 20:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schouten JH, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, Broggini GAL, Gessler C (2014) Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genomes. doi:10.1007/s11295-013-0678-9

    Google Scholar 

  • Silfverberg-Dilworth E, Matasci C, Walser M, Soglio V, Gianfranceschi L, van de Weg WE, Durel CE, Tartarini S, van Kaauwen MPW, Kodde LP, Yamamoto T, Gessler C, Patocchi A (2006) Development of a new set of apple (Malus × domestica Borkh.) microsatellite markers. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U, Mayer K, Platzer M, Stein N (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genom 10:547

    Article  Google Scholar 

  • Thakur K, Chawla V, Bhatti S, Swrnkar MK, Kaur J, Shankar R, Jha G (2013) De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogene. PLoS ONE 8:e53937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® Version 30 Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu V, King S, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan A, Bus V, Chagné D, Crowhurst R, Gleave A, Lavezzo E, Fawcett J, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens R, Durel CE, Gutin A, Bumgarner R, Gardiner S, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptorlike genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

  • Zhou HW, Nussbaumer C, Chao Y, DeLong A (2004) Disparate roles for the regulatory A subunit isoforms in Arabidopsis protein phosphatase 2A. Plant Cell 16:709–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the FEM sequencing facility (lead by Dr Pindo) for all the work done for BAC sequencing and the Provincia Autonoma di Trento for the funding. The authors are grateful to the technicians of the INRA greenhouse facilities, especially Nicolas Dousset who was leading the facilities at that time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickael Malnoy.

Additional information

Valentina Cova and Pauline Lasserre-Zuber have contributed equally to the work.

Sequences have been submitted to EMBL database: Accession #: HG792593 for Malus domestica TNL-Rvi1-3R gene for TIR–NBS–LRR disease resistance protein, cultivar Golden Delicious; Acc. #: HG792594 for TNL-Rvi1-2R; Acc. #: HG792595 for TNL-Rvi1-1R; Acc. #: HG792596 for TNL-Rvi1-3S; Acc. #: HG792597 for TNL-Rvi1-4S; Acc. #: HG792598 for TNL-Rvi1-1S; Acc. #: HG792599 for TNL-Rvi1-2S; Acc. #: HG792600 for TNL-Rvi1-4R; Acc. #: HG792601 for Malus domestica PP2A-GdRvi1-R gene for putative predicted protein cv Golden Delicious; Acc. #: HG792602 for Malus domestica PP2A-GdRvi1-S gene.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 111 kb)

Supplementary material 2 (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cova, V., Lasserre-Zuber, P., Piazza, S. et al. High-resolution genetic and physical map of the Rvi1 (Vg) apple scab resistance locus. Mol Breeding 35, 16 (2015). https://doi.org/10.1007/s11032-015-0245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0245-1

Keywords

Navigation