Skip to main content
Log in

Fine mapping of the parthenocarpic fruit (pat) mutation in tomato

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The parthenocarpic fruit (pat) gene of tomato is a recessive mutation conferring parthenocarpy, which is the capability of a plant to set seedless fruits in the absence of pollination and fertilization. Parthenocarpic mutants offer a useful method to regulate fruit production and a suitable experimental system to study ovary and fruit development. In order to map the Pat locus, two populations segregating from the interspecific cross Lycopersicon esculentum × Lycopersicon pennellii were grown, and progeny plants were classified as parthenocarpic or wild-type by taking into account some characteristic aberrations affecting mutant anthers and ovules. Through bulk segregant analysis, we searched for both random and mapped AFLPs linked to the target gene. In this way, the Pat locus was assigned to the long arm of chromosome 3, as also confirmed by the analysis of a set of L. pennellii substitution and introgression lines. Afterwards, the Pat position was refined by using simple sequence repeats (SSRs) and conserved ortholog set (COS) markers mapping in the target region. The tightest COSs were converted into CAPS or SCAR markers. At present, two co-dominant SCAR markers encompassing a genetic window of 1.2 cM flank the Pat locus. Considering that these markers are orthologous to Arabidopsis genes, a positional cloning exploiting the tomato-Arabidopsis microsynteny seems to be a short-term objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Freeling M (1993) Grasses as a single genetic system: genome composition, colinearity, and compatibility. Trends Genet 9:259–261

    CAS  PubMed  Google Scholar 

  • Bianchi A, Soressi GP (1969) Mutanti di pomodoro artificialmente indotti suscettibili di utilizzazione nel miglioramento genetico. Sementi Elette XV 3:2–6

    Google Scholar 

  • Biezen EA van der, Overduin B, Nijkamp HJ, Hille J (1994) Integrated genetic map of tomato chromosome 3. Rep Tomato Genet Coop 44:8–10

    Google Scholar 

  • Biezen EA van der, Brandwagt BF, van Leeuwen W, Nijkamp HJ, Hille J (1996) Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Mol Gen Genet 251:267–80

    PubMed  Google Scholar 

  • Carmi N, Salts Y, Shabtai S, Pilowsky M, Barg R (1997) Transgenic parthenocarpy due to specific over-sensitization of the ovary to auxin. Acta Hort 447:579–581

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    CAS  Google Scholar 

  • Falavigna A, Baldino M, Soressi GP (1978) Potential of the mono-Mendelian factor pat in the tomato breeding for industry. Genet Agraria 32:159–160

    Google Scholar 

  • Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocapic fruit development in tomato. Mol Breed 5:463–470

    Article  Google Scholar 

  • Fos M, Nuez F (1997) Expression of genes associated with natural parthenocarpy in tomato ovaries. J Plant Physiol 151:235–238

    CAS  Google Scholar 

  • Fos M, Nuez F, Garcia-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–479

    CAS  PubMed  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    CAS  PubMed  Google Scholar 

  • Gustafson FG (1942) Parthenocarpy: natural and artificial. Bot Rev 8:599–654

    CAS  Google Scholar 

  • Haanstra JPV, Wye C, Verbakel H, Meijer-Dekens F, van der Berg P, Odinot P, van Heusden AW, Tanksley SD, Lindhout P, Peleman J (1999) An high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Klimyuk VI, Carroll BJ, Thomas CM, Jones JD (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3:493–4

    PubMed  Google Scholar 

  • Ku H-M, Doganlar S, Chen K-Y, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 9:844–850

    Article  Google Scholar 

  • Ku H-M, Liu J, Doganlar S, Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate-containing region in tomato chromosome 2. Genome 44:470–475

    CAS  PubMed  Google Scholar 

  • Lifschitz E, Brodai L, Hareven D, Hurwitz C, Prihadash A, Pnueli L, Samach A, Zamir D (1993) Molecular mapping of flower development in tomato. In: Yoder J (ed) Molecular biology of tomato. Technomic Publishing Company Incorporated, Lancaster Pennsylvania, USA, pp 175–184

  • Lukyanenko AN (1991) Parthenocarpy in tomato. In: Kalloo G (ed) Genetic improvement of tomato. Monograph on Theor Appl Genet 14, Springer, Berlin Heidelberg New York, pp 167–178

  • Mapelli S, Frova C, Torti G, Soressi GP (1978) Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol 19:1281–1288

    CAS  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114

    CAS  PubMed  Google Scholar 

  • Mazzucato A, Testa G, Biancari T, Soressi GP (1999) Effect of gibberellic acid treatments, environmental conditions, and genetic background on the expression of the parthenocarpic fruit mutation in tomato. Protoplasma 208:18–25

    CAS  Google Scholar 

  • Mesbah LA, Kneppers TJ, Takken FL, Laurent P, Hille J, Nijkamp HJ (1999) Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261:50–7

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis. A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:6553–6558

    Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Grasses line up and form a circle. Curr Biol 5:737–739

    CAS  PubMed  Google Scholar 

  • Mutschler MA, Liedl BE (1994) Interspecific crossing barriers in Lycopersicon and their relationship to self-incompatibility. In: Williams EG, Clarke AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 164–188

  • Oh KC, Hardeman K, Ivanchenko MG, Ellard-Ivey M, Nebenführ A, White TJ, Lomax TL (2002) Fine mapping in tomato using microsynteny with the Arabidopsis genome: the Diageotropica (Dgt) locus. Genome Biol [http://genomebiology.com/2002/3/9/research/0049]

  • Ooijen JW van, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Philouze J, Maisonneuve B (1978) Heredity of the natural ability to set parthenocarpic fruits in the soviet variety Severianin. Tomato Genet Coop 28:12–13

    Google Scholar 

  • Picken AJF (1984) A review of pollination and fruit set in the tomato (Lycopersicon esulentum Mill.). J Hort Sci 59:1–13

    Google Scholar 

  • Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62:753–768

    Google Scholar 

  • Rubatzky VE, Yamaguchi M (1995) World vegetables: principles, production and nutritive values. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 704

    Google Scholar 

  • Schmidt R (2000) Synteny: recent advances and future prospects. Curr Opin Plant Biol 3:97–102

    CAS  PubMed  Google Scholar 

  • Schwabe WW, Mills JJ (1981) Hormones and parthenocarpic fruit set. Hort Abstr 51:661–698

    Google Scholar 

  • Soressi GP, Salamini F (1975) A mono-Mendelian gene inducing parthenocarpic fruits. Rep Tomato Genet Coop 25:22

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vincente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plant species with large genomes. Trends Genet 11:63–68

    CAS  PubMed  Google Scholar 

  • Testa G, Caccia R, Tilesi F, Soressi GP, Mazzucato A (2002) Sequencing and characterization of tomato genes putatively involved in fruit set and early development. Sex Plant Reprod 14:269–277

    Article  CAS  Google Scholar 

  • Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotech 18:233–242

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  CAS  Google Scholar 

  • Yao J, Dong Y, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the C.M. Rick Tomato Genetics Resource Center (TGRC), University of California, Davis, U.S.A., for provision of seed stocks of the introgression and substitution lines, and Riccardo Caccia, Pietro Mosconi and Irene Olimpieri for their valuable help with technical aspects of the research. This work was partially supported by the programme “Biotecnologie vegetali” financed by the Italian Ministry of Agricultural and Forestry Policies (Mi.P.A.F.), project No. 358/8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mazzucato.

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beraldi, D., Picarella, M.E., Soressi, G.P. et al. Fine mapping of the parthenocarpic fruit (pat) mutation in tomato. Theor Appl Genet 108, 209–216 (2004). https://doi.org/10.1007/s00122-003-1442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1442-6

Keywords

Navigation