Skip to main content
Log in

Resistance gene homologues in Theobroma cacao as useful genetic markers

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Resistance gene homologue (RGH) sequences have been developed into useful genetic markers for marker-assisted selection (MAS) of disease resistant Theobroma cacao. A plasmid library of amplified fragments was created from seven different cultivars of cacao. Over 600 cloned recombinant amplicons were evaluated. From these, 74 unique RGHs were identified that could be placed into 11 categories based on sequence analysis. Primers specific to each category were designed. The primers specific for a single RGH category amplified fragments of equal length from the seven different cultivars used to create the library. However, these fragments exhibited single-strand conformational polymorphism (SSCP), which allowed us to map six of the RGH categories in an F2 population of T. cacao. RGHs 1, 4 and 5 were in the same linkage group, with RGH 4 and 5 separated by less than 4 cM. As SSCP can be efficiently performed on our automated sequencer, we have developed a convenient and rapid high throughput assay for RGH alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Aarts MG, te Lintel HB, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:251–258

    CAS  PubMed  Google Scholar 

  • Ahnert DE (2000) Use of QTLs for Witches' Broom resistance in Cocoa breeding. Proc Int Workshop on New Technologies and Cocoa Breeding, 16–17 October 2000, Kota Kinabalu, Sabah, Malaysia, pp 116–119

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2283

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact 11:968–978

    CAS  PubMed  Google Scholar 

  • Deng C, Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: a candidate gene approach. Theor Appl Genet 103:316–322

    Article  CAS  Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. BioTechniques 20:758–760

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP – phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Flament MH, Kebe I, Clement D, Pieretti I, Risterucci AM, N'Goran JAK, Cilas C, Despreaux D, Lanaud C (2001) Genetic mapping of resistance factors to Phytophthora palmivora in cocoa. Genome 44:79–85

    Article  CAS  PubMed  Google Scholar 

  • Gentzbittel L, Mouzeyar S, Badaoui S, Mestries E, Vear F, De Labrouhe DT, Nicolas P (1998) Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor Appl Genet 96:519–525

    CAS  Google Scholar 

  • Graham MA, Marek LF, Lohnes D, Cregan P, Shoemaker RC (2000) Expression and genome organization of resistance gene analogs in soybean. Genome 43:86–93

    CAS  PubMed  Google Scholar 

  • Hammond-Kosack K, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    CAS  Google Scholar 

  • Hayes AJ, Yue YG, Maroof MAS (2000) Expression of two soybean resistance gene candidates shows divergence of paralogous single-copy genes. Theor Appl Genet 101:789–795

    Article  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    CAS  PubMed  Google Scholar 

  • Hunter JR (1990) The status of cacao (Theobroma cacao, Sterculiaceae) in the Western Hemisphere. Econ Bot 44:425–439

    Google Scholar 

  • Irizarry H, Rivera E (2002) Early yield of five cacao families at three locations in Puerto Rico. J Agric Univ PR 82:163–171

    Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11,746–11,750

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lanaud C, Risterucci AM, Pieretti I, Falque M, Bouet PJ, Lagoda L (1999) Isolation and characterization of microsatellites in Theobroma cacao L. Mol Ecol 8:2141–2152

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1992) Marker-assisted selection in relation to traditional methods of plant breeding. In: Stalker HT, Murphy JP (eds) Plant Breeding in the 1990's. CAB International, Wallingford, UK, pp 437–451

  • Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z, Michelmore RW (1998a) The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10:1817–1832

    CAS  PubMed  Google Scholar 

  • Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998b) Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10:1833–1846

    CAS  PubMed  Google Scholar 

  • Motamayor JC, Risterucci AM, Lopez AP, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386

    Article  CAS  PubMed  Google Scholar 

  • Noir S, Combes MC, Anthony F, Lashermes P (2001) Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Genet Genomics 265:654–662

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pires JL, Monteiro ED, Luz EDMN, Silva SDVM, Pinto LRM, Figueria A, Ahnert DE, Brugnerotto MIB (1996) Cocoa breeding for Witches' Broom resistance at CEPLAC, Bahia, Brazil. Proc Int Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement, 24–26 November 1996, Salvador, Brazil, pp 67–71

  • Risterucci AM, Grivet L, N'Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    CAS  PubMed  Google Scholar 

  • Smith TPL, Godtel RA, Lee RT (2000) PCR-based setup for high-throughput cDNA library sequencing on the ABI3700 automated DNA sequencer. BioTechniques 29:698–700

    CAS  PubMed  Google Scholar 

  • Sunnucks P, Wilson ACC, Beheregaray LB, Zenger K, French J, Taylor AC (2000) SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol 9:1699–1710

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), version 4. Sinauer Associates, Sunderland, MA

  • van der Vossen EAG, van der Voort JNAM, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576

    PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap Version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Whitlock B, Baum DA (1999) Phylogenetic relationships of Theobroma and Herrania (Sterculiaceae) based on sequences of the nuclear gene Vicilin. Systematic Bot 24:128–138

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Mars, Inc., Hackettstown, N.J., and especially Mr. John Lunde and Dr. Jeff Morgan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Schnell.

Additional information

Communicated by D.B. Neale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, D.N., Heath, M., Wisser, R.J. et al. Resistance gene homologues in Theobroma cacao as useful genetic markers. Theor Appl Genet 107, 191–202 (2003). https://doi.org/10.1007/s00122-003-1239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1239-7

Keywords

Navigation