Skip to main content
Log in

Magnetresonanzgeführte Strahlentherapie

Beginn einer neuen Ära in der Radioonkologie?

Magnetic-resonance-guided radiotherapy

The beginning of a new era in radiation oncology?

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches Problem

Die bildgeführte Radiotherapie („image-guided radiotherapy“, IGRT) mittels Röntgen oder Cone-beam-Computertomographie (CT) war ein wesentlicher Entwicklungsschritt auf dem Weg zu hochpräzisen Bestrahlungstechniken. Inter- und intrafraktionelle Lageveränderungen der Zielvolumina und radiosensibler Risikoorgane stellen weiterhin einen limitierenden Faktor dar und können das Erreichen einer hohen Dosis im Tumor bei geringer Risikoorganbelastung erschweren.

Neue Verfahren

An Hybridgeräten, welche einen Linearbeschleuniger direkt mit einem integrierten Magnetresonanztomographen kombinieren, ist nun die Bestrahlung von Patienten unter Live-Bildgebung mittels MRT möglich.

Leistungsfähigkeit

Diese Systeme bieten neben einem deutlich verbesserten Weichgewebekontrast erstmals die Möglichkeit der online-adaptiven Radiotherapie. Hierbei kann der Bestrahlungsplan täglich, während der Patient auf dem Tisch liegt, an Veränderungen des Tumors und der umliegenden Risikoorgane angepasst werden, um eine noch bessere Schonung der Risikoorgane bei gleichzeitiger Dosiseskalation zur Optimierung der Tumorkontrolle zu ermöglichen.

Bewertung

In dieser Übersichtsarbeit werden die zugrundeliegende Motivation für die Entwicklung der MR-geführten Radiotherapie, technische Herausforderungen und der aktuelle Stand der Systeme dargestellt. Zudem werden das klinische Potenzial und mögliche weitere Entwicklungen aufgezeigt.

Empfehlung für die Praxis

Die zunehmende Verfügbarkeit der MRT-Bildgebung an Linearbeschleunigern erfordert hohe diagnostische Kompetenz. Hierfür ist eine enge Zusammenarbeit und gegenseitiges Lernen von Radiologie und Radioonkologie unerlässlich.

Abstract

Clinical issue

Image-guided radiotherapy (IGRT) using X‑rays and cone-beam computed tomography (CT) has fostered precision radiotherapy. However, inter- and intrafractional variations of target volume position and organs at risk still limit target volume dose and sparing of radiosensitive organs at risk.

Methodological innovations

Hybrid machines directly combining linear accelerators and magnetic resonance (MR) imaging allow for live imaging during radiotherapy.

Performance

Besides highly improved soft tissue contrast, MR-linacs enable online, on-table adaptive radiotherapy. Thus, adaptation of the treatment plan to the anatomy of the day, dose escalation and superior sparing of organs at risk become possible.

Achievements

This article summarizes the underlying intention for the development of MR-guided radiotherapy, technical innovations and challenges as well as the current state-of-the-art. Potential clinical benefits and future developments are discussed.

Practical recommendations

Increasing availability of MR imaging at linear accelerators calls for the ability to review and interpret MR images. Therefore, close collaborations of diagnostic radiologists and radiation oncologists are mandatory to foster this fascinating technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Chin S et al (2020) Magnetic resonance-guided radiation therapy: a review. J Med Imaging Radiat Oncol 64(1):163–177

    Article  Google Scholar 

  2. Karlsson M et al (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74(2):644–651

    Article  Google Scholar 

  3. Jaffray DA et al (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24(3):193–195

    Article  Google Scholar 

  4. Bostel T et al (2014) MR-guidance—a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9:12

    Article  Google Scholar 

  5. Jensen AD et al (2009) Catch me if you can—the use of image guidance in the radiotherapy of an unusual case of esophageal cancer. Strahlenther Onkol 185(7):469–473

    Article  Google Scholar 

  6. Combs SE, Nüsslin F, Wilkens JJ (2016) Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 192(4):209–215

    Article  Google Scholar 

  7. Witt JS, Rosenberg SA, Bassetti MF (2020) MRI-guided adaptive radiotherapy for liver tumours: visualising the future. Lancet Oncol 21(2):e74–e82

    Article  Google Scholar 

  8. Hall WA et al (2019) The transformation of radiation oncology using real-time magnetic resonance guidance: a review. Eur J Cancer 122:42–52

    Article  CAS  Google Scholar 

  9. Pollard JM et al (2017) The future of image-guided radiotherapy will be MR guided. BJR 90(1073):20160667

    Article  Google Scholar 

  10. Gani C, Boldrini L, Valentini V (2019) Online MR guided radiotherapy for rectal cancer. New opportunities. Clin Transl Radiat Oncol 18:66–67

    Article  CAS  Google Scholar 

  11. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577

    Article  Google Scholar 

  12. Dercle L et al (2020) Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): state-of-the-art, challenges and perspectives. Methods. https://doi.org/10.1016/j.ymeth.2020.07.003

    Article  PubMed  Google Scholar 

  13. Fokas E et al (2014) Tumor regression grading after preoperative chemoradiotherapy for locally advanced rectal carcinoma revisited: updated results of the CAO/ARO/AIO-94 trial. J Clin Oncol 32(15):1554–1562

    Article  Google Scholar 

  14. Nyholm T, Jonsson J (2014) Counterpoint: opportunities and challenges of a magnetic resonance imaging-only radiotherapy work flow. Semin Radiat Oncol 24(3):175–180

    Article  Google Scholar 

  15. Cao Y et al (2017) MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro Oncol 19(2):ii16–ii29

    Article  CAS  Google Scholar 

  16. Gurney-Champion OJ et al (2018) MRI-based assessment of 3D Intrafractional motion of head and neck cancer for radiation therapy. Int J Radiat Oncol Biol Phys 100(2):306–316

    Article  Google Scholar 

  17. Mohamed ASR et al (2018) Prospective in silico study of the feasibility and dosimetric advantages of MRI-guided dose adaptation for human papillomavirus positive oropharyngeal cancer patients compared with standard IMRT. Clin Transl Radiat Oncol 11:11–18

    Article  Google Scholar 

  18. Henke LE et al (2019) Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial. Adv Radiat Oncol 4(1):201–209

    Article  Google Scholar 

  19. Finazzi T et al (2019) Role of on-table plan adaptation in MR-guided ablative radiation therapy for central lung tumors. Int J Radiat Oncol Biol Phys 104(4):933–941

    Article  Google Scholar 

  20. Giuliani M et al (2018) SUNSET: stereotactic radiation for ultracentral non-small-cell lung cancer-A safety and efficacy trial. Clin Lung Cancer 19(4):e529–e532

    Article  Google Scholar 

  21. Rosenberg SA et al (2019) A multi-institutional experience of MR-guided liver stereotactic body radiation therapy. Adv Radiat Oncol 4(1):142–149

    Article  Google Scholar 

  22. Feldman AM et al (2019) Real-time magnetic resonance-guided liver stereotactic body radiation therapy: an institutional report using a magnetic resonance-linac system. Cureus 11(9):e5774

    PubMed  PubMed Central  Google Scholar 

  23. Palacios MA et al (2018) Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys 102(2):426–433

    Article  Google Scholar 

  24. Boldrini L et al (2019) Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol 14(1):71

    Article  Google Scholar 

  25. Rudra S et al (2019) Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med 8(5):2123–2132

    Article  Google Scholar 

  26. Tanderup K et al (2010) Adaptive management of cervical cancer radiotherapy. Semin Radiat Oncol 20(2):121–129

    Article  Google Scholar 

  27. Bruynzeel AME et al (2019) A prospective single-arm phase 2 study of stereotactic magnetic resonance guided adaptive radiation therapy for prostate cancer: early toxicity results. Int J Radiat Oncol Biol Phys 105(5):1086–1094

    Article  CAS  Google Scholar 

  28. Winkel D et al (2020) Target coverage and dose criteria based evaluation of the first clinical 1.5T MR-linac SBRT treatments of lymph node oligometastases compared with conventional CBCT-linac treatment. Radiother Oncol 146:118–125

    Article  CAS  Google Scholar 

  29. Klüter S et al (2020) First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany. Strahlenther Onkol 196:691–698

    Article  Google Scholar 

  30. Lagendijk JJ et al (2008) MRI/linac integration. Radiother Oncol 86(1):25–29

    Article  Google Scholar 

  31. Kluter S (2019) Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol 18:98–101

    Article  Google Scholar 

  32. Kurz C et al (2020) Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol 15(1):93

    Article  Google Scholar 

  33. Stemkens B, Paulson ES, Tijssen RHN (2018) Nuts and bolts of 4D-MRI for radiotherapy. Phys Med Biol 63(21):21tr01

    Article  CAS  Google Scholar 

  34. Green OL et al (2018) First clinical implementation of real-time, real anatomy tracking and radiation beam control. Med Phys. https://doi.org/10.1002/mp.13002

    Article  PubMed  Google Scholar 

  35. Baumann P et al (2009) Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 27(20):3290–3296

    Article  Google Scholar 

  36. Nejad-Davarani SP et al (2019) Large field of view distortion assessment in a low-field MR-linac. Med Phys 46(5):2347–2355

    Article  Google Scholar 

  37. Tijssen RHN et al (2019) MRI commissioning of 1.5T MR-linac systems—a multi-institutional study. Radiother Oncol 132:114–120

    Article  Google Scholar 

  38. Shaverdian N et al (2017) Feasibility evaluation of diffusion-weighted imaging using an integrated MRI-radiotherapy system for response assessment to neoadjuvant therapy in rectal cancer. Br J Radiol 90(1071):20160739

    Article  Google Scholar 

  39. O’Connor JP et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186

    Article  Google Scholar 

  40. Bol GH et al (2012) Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator. Phys Med Biol 57(5):1375–1385

    Article  CAS  Google Scholar 

  41. Oborn BM et al (2017) Future of medical physics: real-time MRI-guided proton therapy. Med Phys 44(8):e77–e90

    Article  CAS  Google Scholar 

  42. Njeh CF, Dong L, Orton CG (2013) Point/counterpoint. IGRT has limited clinical value due to lack of accurate tumor delineation. Med Phys 40(4):40601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hörner-Rieber.

Ethics declarations

Interessenkonflikt

P. Hoegen erhielt Reisekostenerstattungen von AstraZeneca und hält Aktien an Novocure ohne Bezug zur eingereichten Arbeit. S. Regnery wird durch das Physician-Scientist Programm der Medizinischen Fakultät Heidelberg gefördert. S. Klüter erhielt Vortragshonorare und Reisekostenerstattungen von ViewRay Inc. J. Debus erhielt Drittmittel von CRI – The Clinical Research Institute GmbH, View Ray Inc., Accuray International, Accuray Incorporated, RaySearch Laboratories AB, Vision RT limited, Astellas Pharma GmbH, Merck Serono GmbH, Astra Zeneca GmbH, Solution Akademie GmbH, Ergomed PLC Surrey Research Park, Siemens Healthcare GmbH, Quintiles GmbH, Pharmaceutecal Research Associates GmbH, Boehringer Ingelheim Pharma GmbH Co, PTW-Freiburg Dr. Pychlau GmbH, Nanobiotix A.A. und IntraOP Medical ohne Bezug zum eingereichten Manuskript. J. Hörner-Rieber erhielt Vortragshonorare und Reiskeostenerstattungen von ViewRay Inc, wie auch Reisekostenerstattungen von IntraOP Medical und Elekta Instrument AB ohne Bezug zur eingereichten Arbeit. C. K. Spindeldreier, C. Buchele, C. Rippke und F. Weykamp geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoegen, P., Spindeldreier, C.K., Buchele, C. et al. Magnetresonanzgeführte Strahlentherapie. Radiologe 61, 13–20 (2021). https://doi.org/10.1007/s00117-020-00761-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-020-00761-8

Schlüsselwörter

Keywords

Navigation