Skip to main content
Log in

Transvaskuläre Ablation des hepatozellulären Karzinoms

Ist Chemotherapie alles?

Transarterial ablation of hepatocellular carcinoma

Status and developments

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Das hepatozelluläre Karzinom (HCC) ist weltweit betrachtet das fünfthäufigste Malignom und die Haupttodesursache bei Patienten mit Leberzirrhose in Europa. Während kurative Therapieansätze (Resektion, Lebertransplantation sowie perkutane Ablation) bei nur 30–40% der Patienten mit einem HCC möglich sind, erfordern die meisten Patienten lokoregionäre bzw. palliative Therapieansätze.

Die Rationale der transvaskulären Ablation des HCC liegt darin, dass die stark hypervaskulären HCC-Knoten ihre Blutversorgung überwiegend über die Leberarterien akquirieren. Der Begriff der transvaskulären Ablation beschreibt sehr unterschiedliche Therapieregime, die in 4 Hauptgruppen unterteilt werden können: 1. cTACE (konventionelle transarterielle Chemoembolisation), 2. TAE (blande Embolisation oder transarterielle Embolisation), 3. DEB-TACE (TACE mittels „drug-eluting beads“, DEB) und 4. SIRT (selektive interne Radiotherapie).

Die konventionelle cTACE ist die am häufigsten eingesetzte transvaskuläre Ablation. Sie stellt eine Kombination aus einer intraarteriellen Chemotherapie und einer Embolisation mit daraus folgendem Verschluss des arteriellen Tumorgefäßbetts dar. Dabei sind die Wahl des Chemotherapeutikums, des Embolisats, der Einsatz von Lipiodol, das Intervall zwischen den TACE-Sitzungen und sogar der genaue Ablauf einer cTACE (Reihenfolge zwischen Chemotherapie und Embolisation) nicht standardisiert. Speziell die Frage nach der Notwendigkeit des Einsatzes der intraarteriellen Chemotherapie konnte noch nicht abschließend beantwortet werden. So bietet die blande Embolisation (ohne die intraarterielle Gabe eines Chemotherapeutikums) unter Einsatz kleinster, eng kalibrierter, sphärischer Partikel aktuell Nekroseraten, die mit denen aus cTACE-Studien vergleichbar sind.

Die DEB-TACE verbindet durch die Beladbarkeit der Embolisationspartikel mit Chemotherapeutika die Vorteile der cTACE und der blanden Embolisation und verspricht durch eine länger wirkende Chemotherapie im Tumorgefäßbett eine weitere Steigerung der intratumoralen Zytotoxizität bei gleichzeitig gesenkter systemischer Toxizität.

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and represents the main cause of death among European patients with liver cirrhosis. Only 30–40% of patients diagnosed with HCC are candidates for curative treatment options (e.g. surgical resection, liver transplantation or ablation). The remaining majority of patients must undergo local regional and palliative therapies.

Transvascular ablation of HCC takes advantage of the fact that the hypervascularized HCC receives most of its blood supply from the hepatic artery. In this context transvascular ablation describes different therapy regimens which can be assigned to four groups: cTACE (conventional transarterial chemoembolization), bland embolization (transarterial embolization TAE), DEB-TACE (TACE with drug-eluting beads, DEB) and SIRT (selective internal radiation therapy, radioembolization).

Conventional TACE is the most common type of transvascular ablation and represents a combination of intra-arterial chemotherapy and embolization with occlusion of the arterial blood supply. However, there is no standardized regimen with respect to the chemotherapeutic drug, the embolic agent, the usage of lipiodol and the interval between the TACE procedures. Even the exact course of a cTACE procedure (order of chemotherapy or embolization) is not standardized. It remains unclear whether or not intra-arterial chemotherapy is definitely required as bland embolization using very small, tightly calibrated spherical particles (without intra-arterial administration of a chemotherapeutic drug) shows tumor necrosis comparable to cTACE.

For DEB-TACE microparticles loaded with a chemotherapeutic drug combine the advantages of cTACE and bland embolization. Thereby, a continuing chemotherapeutic effect within the tumor might cause a further increase in intratumoral cytotoxicity and at the same time a decrease in systemic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

BSC:

Best supportive care

CEUS:

Kontrastverstärkter Ultraschall

CR:

Complete response

cTACE:

Konventionelle transarterielle Chemoembolisation

DC:

Disease control

DEB:

Drug-eluting beads

HCC:

Hepatozelluläres Karzinom

MDCT:

Multidetektor-CT

OR:

Objective response rate

PD:

Progressive disease

PES:

Postembolisationssyndrom

PR:

Partial response

PVA:

Polyvinylalkohol

RCT:

Kontrollierte randomisierte Studie

RILD:

Radiation-induced liver disease

SD:

Stable disease

SIRT:

Selektive interne Radiotherapie

TACE:

Transarterielle Chemoembolisation

TAE:

Transarterielle Embolisation

TTP:

Time to progression

Literatur

  1. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917

    Article  PubMed  Google Scholar 

  2. Marelli L, Stigliano R, Triantos C et al (2007) Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol 30:6–25

    Article  PubMed  Google Scholar 

  3. Llovet JM, Real MI, Montana X et al (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359:1734–1739

    Article  PubMed  Google Scholar 

  4. Lo CM, Ngan H, Tso WK et al (2002) Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 35:1164–1171

    Article  PubMed  CAS  Google Scholar 

  5. Bonomo G, Pedicini V, Monfardini L et al (2010) Bland embolization in patients with unresectable hepatocellular carcinoma using precise, tightly size-calibrated, anti-inflammatory microparticles: first clinical experience and one-year follow-up. Cardiovasc Intervent Radiol 33:552–559

    Article  PubMed  Google Scholar 

  6. Hong K, Khwaja A, Liapi E et al (2006) New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res 12:2563–2567

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe S, Nishioka M, Ohta Y et al (1994) Prospective and randomized controlled study of chemoembolization therapy in patients with advanced hepatocellular-carcinoma. Cancer Chemother Pharmacol 33:93–96

    Article  Google Scholar 

  8. Ichida T, Kato M, Hayakawa A et al (1992) Treatment of hepatocellular carcinoma with a CDDP-epirubicin-lipiodol suspension – a pilot clinicopharmacological study. Cancer Chemother Pharmacol 31:51–59

    Article  Google Scholar 

  9. Ono Y, Yoshimasu T, Ashikaga R et al (2000) Long-term results of lipiodol-transcatheter arterial embolization with cisplatin or doxorubicin for unresectable hepatocellular carcinoma. Am J Clin Oncol 23:564–568

    Article  PubMed  CAS  Google Scholar 

  10. Ikeda K, Saitoh S, Koida I et al (1995) A prospective randomized evaluation of a compound of tegafur and uracil as an adjuvant chemotherapy for hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Am J Clin Oncol 18:204–210

    Article  PubMed  CAS  Google Scholar 

  11. Ikeda K, Saitoh S, Suzuki Y et al (1997) A prospective randomized administration of 5’-deoxy-5-fluorouridine as adjuvant chemotherapy for hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Am J Clin Oncol 20:202–208

    Article  PubMed  CAS  Google Scholar 

  12. Cheng AL, Kang YK, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34

    Article  PubMed  CAS  Google Scholar 

  13. Detry O, Delwaide J, De Roover A et al (2009) Palliative management of hepatocarcinoma with sorafenib (nexavar). Results of the SHARP study (Sorafenib Hepato Carcinoma Assessment Randomized Protocol Rrial). Rev Med Liege 64:168–170

    PubMed  CAS  Google Scholar 

  14. Johnson PJ, Kalayci C, Dobbs N et al (1991) Pharmacokinetics and toxicity of intraarterial adriamycin for hepatocellular-carcinoma – effect of coadministration of lipiodol. J Hepatol 13:120–127

    Article  PubMed  CAS  Google Scholar 

  15. Matsuo N, Uchida H, Sakaguchi H et al (1997) Optimal lipiodol volume in transcatheter arterial chemoembolotherapy for hepatocellular carcinoma: study based on lipiodol accumulation patterns and histopathologic findings. Semin Oncol 24:61–70

    Google Scholar 

  16. Coldwell DM, Stokes KR, Yakes WF (1994) Embolotherapy – agents, clinical applications, and techniques. Radiographics 14:623–643

    PubMed  CAS  Google Scholar 

  17. Brown DB, Pilgram TK, Darcy MD et al (2005) Hepatic arterial chemoembolization for hepatocellular carcinoma: comparison of survival rates with different embolic agents. J Vasc Interv Radiol 16:1661–1666

    Article  PubMed  Google Scholar 

  18. Covey AM, Maluccio MA, Schubert J et al (2006) Particle embolization of recurrent hepatocellular carcinoma after hepatectomy. Cancer 106:2181–2189

    Article  PubMed  Google Scholar 

  19. Stampfl S, Stampfl U, Bellemann N et al (2008) Biocompatibility and recanalization characteristics of hydrogel microspheres with polyzene-F as polymer coating. Cardiovasc Intervent Radiol 31:799–806

    Article  PubMed  Google Scholar 

  20. Kettenbach J, Stadler A, Katzler IV et al (2008) Drug-loaded microspheres for the treatment of liver cancer: review of current results. Cardiovasc Intervent Radiol 31:468–476

    Article  PubMed  Google Scholar 

  21. Ji SK, Cho YK, Ahn YS et al (2008) Multivariate analysis of the predictors of survival for patients with hepatocellular carcinoma undergoing transarterial chemoembolization: focusing on superselective chemoembolization. Korean J Radiol 9:534–540

    Article  PubMed  Google Scholar 

  22. Takayasu K, Shima Y, Muramatsu Y et al (1987) Hepatocellular-carcinoma – treatment with intraarterial iodized oil with and without chemotherapeutic agents. Radiology 163:345–351

    PubMed  CAS  Google Scholar 

  23. Geschwind JFH, Ramsey DE, Cleffken B et al (2003) Transcatheter arterial chemoembolization of liver tumors: effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency. Cardiovasc Intervent Radiol 26:111–117

    Article  PubMed  Google Scholar 

  24. Horiguchi Y, Itoh M, Takagawa H et al (1992) Assessment of chemoembolization therapy for primary liver-cancer using a stabilized adriamycin-lipiodol suspension. Cancer Chemother Pharmacol 31:60–64

    Article  Google Scholar 

  25. Monna T, Kanno T, Marumo T et al (1982) A comparison of transcatheter arterial embolization with one shot therapy for the patients with hepatic cell carcinoma. Gastroenterol Jpn 17:542–549

    PubMed  CAS  Google Scholar 

  26. Yamashita Y, Torashima M, Oguni T et al (1993) Liver parenchymal changes after transcatheter arterial embolization therapy for hepatoma: CT evaluation. Abdom Imaging 18:352–356

    Article  PubMed  CAS  Google Scholar 

  27. Tarazov PG, Polysalov VN, Prozorovskij KV et al (2000) Ischemic complications of transcatheter arterial chemoembolization in liver malignancies. Acta Radiol 41:156–160

    Article  PubMed  CAS  Google Scholar 

  28. Song SY, Chung JW, Han JK et al (2001) Liver abscess after transcatheter oily chemoembolization for hepatic tumors: incidence, predisposing factors, and clinical outcome. J Vasc Interv Radiol 12:313–320

    Article  PubMed  CAS  Google Scholar 

  29. Kim HK, Chung YH, Song BC et al (2001) Ischemic bile duct injury as a serious complication after transarterial chemoembolization in patients with hepatocellular carcinoma. J Clin Gastroenterol 32:423–427

    Article  PubMed  CAS  Google Scholar 

  30. Wang MQ, Shao RH, Ye HY et al (2005) Investigation of bile duct injury after transcatheter arterial chemoembolization. Zhonghua Zhong Liu Za Zhi 27:609–612

    PubMed  Google Scholar 

  31. Chan AO, Yuen MF, Hui CK et al (2002) A prospective study regarding the complications of transcatheter intraarterial lipiodol chemoembolization in patients with hepatocellular carcinoma. Cancer 94:1747–1752

    Article  PubMed  Google Scholar 

  32. Takayasu K, Arii S, Ikai I et al (2006) Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterology 131:461–469

    Article  PubMed  CAS  Google Scholar 

  33. Llovet JM, Bruix J (2008) Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 48(Suppl 1):20–37

    Article  Google Scholar 

  34. Vogl TJ, Zangos S, Balzer JO et al (2007) Transarterial chemoembolization (TACE) in hepatocellular carcinoma: technique, indication and results. Rofo 179:1113–1126

    Article  PubMed  CAS  Google Scholar 

  35. Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37:429–442

    Article  PubMed  CAS  Google Scholar 

  36. Hatanaka Y, Yamashita Y, Takahashi M et al (1995) Unresectable hepatocellular-carcinoma – analysis of prognostic factors in transcatheter management. Radiology 195:747–752

    PubMed  CAS  Google Scholar 

  37. Kawai S, Okamura J, Ogawa M et al (1992) Prospective and randomized clinical-trial for the treatment of hepatocellular-carcinoma – a comparison of lipiodol-transcatheter arterial embolization with and without adriamycin (1st cooperative study). Cancer Chemother Pharmacol 31:1–6

    Article  Google Scholar 

  38. Chang JM, Tzeng WS, Pan HB et al (1994) Transcatheter arterial embolization with or without cisplatin treatment of hepatocellular carcinoma. A randomized controlled study. Cancer 74:2449–2453

    Article  PubMed  CAS  Google Scholar 

  39. Malagari K, Pomoni M, Kelekis A et al (2010) Prospective randomized comparison of chemoembolization with doxorubicin-eluting beads and bland embolization with BeadBlock for hepatocellular carcinoma. Cardiovasc Intervent Radiol 33:541–551

    Article  PubMed  Google Scholar 

  40. Wu XZ, Xie GR, Chen D (2007) Hypoxia and hepatocellular carcinoma: the therapeutic target for hepatocellular carcinoma. J Gastroenterol Hepatol 22:1178–1182

    Article  PubMed  CAS  Google Scholar 

  41. Sergio A, Cristofori C, Cardin R et al (2008) Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am J Gastroenterol 103:914–921

    Article  PubMed  Google Scholar 

  42. Kobayashi N, Ishii M, Ueno Y et al (1999) Co-expression of Bcl-2 protein and vascular endothelial growth factor in hepatocellular carcinomas treated by chemoembolization. Liver 19:25–31

    Article  PubMed  CAS  Google Scholar 

  43. Erinjeri JP, Salhab HM, Covey AM et al (2010) Arterial patency after repeated hepatic artery bland particle embolization. J Vasc Interv Radiol 21:522–526

    Article  PubMed  Google Scholar 

  44. Siegal T, Horowitz A, Gabizon A (1995) Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 83:1029–1037

    Article  PubMed  CAS  Google Scholar 

  45. Hong K, Georgiades CS, Geschwind JFH (2006) Technology Insight: image-guided therapies for hepatocellular carcinoma – intra-arterial and ablative techniques. Nat Clin Pract Oncol 3:315–324

    Article  PubMed  Google Scholar 

  46. Malagari K, Pomoni M, Spyridopoulos TN et al (2011) Safety profile of sequential transcatheter chemoembolization with DC Bead: results of 237 hepatocellular carcinoma (HCC) patients. Cardiovasc Intervent Radiol 34:774–785

    Article  PubMed  Google Scholar 

  47. Lammer J, Malagari K, Vogl T et al (2010) Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33:41–52

    Article  PubMed  Google Scholar 

  48. Ten Haken RK, Lawrence TS, Dawson LA (2006) Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma: in regards to Xu et al. Int J Radiat Oncol Biol Phys 66:1272–1273 (Int J Radiat Oncol Biol Phys 2006;65:189–195)

    Google Scholar 

  49. Salem R, Lewandowski RJ, Kulik L et al (2011) Radioembolization results in longer time-to-progression and reduced toxicity compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology 140:497–507 e492

    Article  PubMed  Google Scholar 

  50. Kulik LM, Carr BI, Mulcahy MF et al (2008) Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 47:71–81

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.A. Radeleff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radeleff, B., Stampfl, U., Sommer, C. et al. Transvaskuläre Ablation des hepatozellulären Karzinoms. Radiologe 52, 44–55 (2012). https://doi.org/10.1007/s00117-011-2211-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-011-2211-1

Schlüsselwörter

Keywords

Navigation