Skip to main content
Log in

Mikrowellenablation

Neue Systeme, neue Einsatzgebiete?

Microwave tumor ablation

New devices, new applications?

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches Problem

Ein großer Teil der Patienten mit Lebertumoren kann nicht chirurgisch behandelt werden. Als Alternative bieten sich jedoch in einigen Fällen minimalinvasive bildgesteuerte Therapien an.

Therapeutische Standardverfahren

Das klassische minimalinvasive Ablationsverfahren ist die Radiofrequenzablation. Weitere Optionen sind die Kryo-, Laser- und Mikrowellenablation.

Neue Therapieverfahren

Die häufigsten Einsatzgebiete der Mikrowellenablation sind die Behandlung von Leber-, Nieren- und Lungentumoren. Neue Einsatzgebiete sind die Ablation von Nebennieren- und Knochentumoren oder die Volumenreduktion der Milz bei Splenomegalie.

Leistungsfähigkeit

Die Hersteller von Ablationssystemen verfolgen verschiedene Strategien, um eine optimale Ablationszone zu erzeugen, wie Wasser- oder Gaskühlung der Antenne, der gleichzeitige Einsatz mehrerer Applikatoren oder eine automatische Modulation der abgegebenen Energie bzw. Mikrowellenfrequenz.

Bewertung

Bei der Mikrowellenablation wird ein bestimmtes Gewebevolumen direkt erhitzt, sodass dieses Verfahren weniger anfällig für den kühlenden Effekt von Gefäßen ist, die durch die Ablationszone verlaufen. Außerdem ist die Mikrowellenablation unabhängig vom elektrischen Widerstand des zu behandelnden Gewebes, was Vorteile für die Therapie von Geweben mit geringer elektrischer Leitfähigkeit wie Lungen- und Knochentumoren mit sich bringt. Einige Studien haben nachgewiesen, dass die durch Mikrowellenablation im Vergleich zu den durch Radiofrequenzablation erzeugten Ablationszonen zum einen größer sind und diese zum anderen in kürzerer Zeit erreicht werden können.

Empfehlung für die Praxis

Klassische Indikationen sind die Behandlung von Leber-, Lungen-, und Nierentumoren. Anfängliche technische Probleme des Verfahrens konnten weitestgehend gelöst werden, sodass ein Bedeutungszuwachs der Mikrowellenablation unter den thermoablativen Verfahren zu erwarten ist.

Abstract

Clinical issue

The majority of patients with hepatic malignancies are not amenable to surgical resection. In some of these cases minimally invasive ablative therapies are a treatment option.

Standard treatment

Besides radiofrequency ablation, the most common ablative therapies are cryoablation, laser ablation and microwave ablation.

Treatment innovations

The classic fields of application of microwave ablation are the treatment of malignancies of the liver, kidneys and lungs. Furthermore, cases of treatment of bone tumors and tumors of the adrenal gland have been reported as well as treatment of secondary hypersplenism.

Performance

The manufacturers of microwave systems pursue different strategies to reach an optimal ablation zone, such as water or gas cooling of the antenna, the simultaneous use of different antennas or an automatic modulation of the microwave energy and frequency.

Achievements

In contrast to other tumor ablation methods microwave ablation causes a direct heating of a tissue volume, thus this method is less vulnerable to the cooling effect of vessels in the ablation zone. Moreover the electric conductivity of the treated tissue does not influence microwave radiation so that microwave ablation has advantages for the treatment of high-resistance organs, such as the lungs or bone. Some publications have shown that microwave ablation causes larger ablation zones in less time in comparison to radiofrequency ablation.

Practical recommendations

Classic indications for microwave ablation are the treatment of malignancies of the liver, lungs and kidneys. Initial technical problems have been solved, so that an increasing significance of the microwave ablation among the ablative therapies is to be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Anai H, Uchida BT, Pavcnik D etal (2006) Effects of blood flow and/or ventilation restriction on radiofrequency coagulation size in the lung: an experimental study in swine. Cardiovasc Intervent Radiol 29:838–845

    Article  PubMed  Google Scholar 

  2. Awad MM, Devgan L, Kamel IR et al (2007) Microwave ablation in a hepatic porcine model: correlation of CT and histopathologic findings. HPB (Oxford) 9:357–362

    Google Scholar 

  3. Brace CL, Hinshaw JL, Laeseke PF et al (2009) Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 251:705–711

    Article  PubMed  Google Scholar 

  4. Brace CL, Laeseke PF, Sampson LA et al (2007) Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology 244:151–156

    Article  PubMed  Google Scholar 

  5. Carrafiello G, Laganà D, Pellegrino C et al (2009) Percutaneous imaging-guided ablation therapies in the treatment of symptomatic bone metastases: preliminary experience. Radiol Med 114:608–625

    Article  PubMed  CAS  Google Scholar 

  6. Castle SM, Salas N, Leveillee RJ (2011) Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology 77:792–797

    Article  PubMed  Google Scholar 

  7. Geraghty PR, Kee ST, McFarlane G etal (2003) CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology 229:475–481

    Article  PubMed  Google Scholar 

  8. Grieco CA, Simon CJ, Mayo-Smith WW et al (2007) Image-guided percutaneous thermal ablation for the palliative treatment of chest wall masses. Am J Clin Oncol 30:361–367

    Article  PubMed  Google Scholar 

  9. Kim YS, Rhim H, Cho OK et al (2006) Intrahepatic recurrence after percutaneous radiofrequency ablation of hepatocellular carcinoma: analysis of the pattern and risk factors. Eur J Radiol 59:432–441

    Article  PubMed  CAS  Google Scholar 

  10. Laeseke PF, Lee FT Jr, Sampson LA et al (2009) Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol 20:1224–1229

    Article  PubMed  Google Scholar 

  11. Li X, Fan W, Zhang L et al (2011) CT-guided percutaneous microwave ablation of adrenal malignant carcinoma: preliminary results. Cancer, doi:10.1002/cncr.26128

  12. Li X, Zhang L, Fan W et al (2011) Comparison of microwave ablation and multipolar radiofrequency ablation, both using a pair of internally cooled interstitial applicators: results in ex vivo porcine livers. Int J Hyperthermia 27:240–248

    Article  PubMed  Google Scholar 

  13. Liang P, Gao Y, Zhang H et al (2011) Microwave ablation in the spleen for treatment of secondary hypersplenism: a preliminary study. AJR Am J Roentgenol 196:692–696

    Article  PubMed  Google Scholar 

  14. Liu FY, Yu XL, Liang P et al (2010) Comparison of percutaneous 915 MHz microwave ablation and 2450 MHz microwave ablation in large hepatocellular carcinoma. Int J Hyperthermia 26:448–455

    Article  PubMed  Google Scholar 

  15. Liang P, Wang Y, Zhang D et al (2008) Ultrasound guided percutaneous microwave ablation for small renal cancer: initial experience. J Urol 180:844–848

    Article  PubMed  Google Scholar 

  16. Lu DS, Raman SS, Limanond P et al (2003) Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol 14:1267–1274

    Article  PubMed  Google Scholar 

  17. Lu MD, Xu HX, Xie XY et al (2005) Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. J Gastroenterol 40:1054–1060

    Article  PubMed  Google Scholar 

  18. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr (2010) Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 21:192–203

    Article  Google Scholar 

  19. Rehman J, Landman J, Lee D et al (2004) Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature. J Endourol 18:83–104

    Article  PubMed  Google Scholar 

  20. Ruers T, Bleichrodt RP (2002) Treatment of liver metastases, an update on the possibilities and results. Eur J Cancer 38:1023–1033

    Article  PubMed  CAS  Google Scholar 

  21. Santos RS, Gan J, Ohara CJ et al (2010) Microwave ablation of lung tissue: impact of single-lung ventilation on ablation size. Ann Thorac Surg 90:1116–1119

    Article  PubMed  Google Scholar 

  22. Shibata T, Niinobu T, Ogata N, Takami M (2000) Microwave coagulation therapy for multiple hepatic metastases from colorectal carcinoma. Cancer 89:276–284

    Article  PubMed  CAS  Google Scholar 

  23. Sun Y, Wang Y, Ni X et al (2009) Comparison of ablation zone between 915- and 2,450-MHz cooled-shaft microwave antenna: results in in vivo porcine livers. AJR Am J Roentgenol 192:511–514

    Article  PubMed  Google Scholar 

  24. Wang Y, Liang P, Yu X et al (2009) Ultrasound-guided percutaneous microwave ablation of adrenal metastasis: preliminary results. Int J Hyperthermia 25:455–461

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Sun Y, Feng L et al (2008) Internally cooled antenna for microwave ablation: results in ex vivo and in vivo porcine livers. Eur J Radiol 67:357–361

    Article  PubMed  Google Scholar 

  26. Wolf FJ, Dupuy DE, Machan JT, Mayo-Smith WW (2011) Adrenal neoplasms: effectiveness and safety of CT-guided ablation of 23 tumors in 22 patients. Eur J Radiol 2011 May 31 [Epub ahead of print]

  27. Wolf FJ, Grand DJ, Machan JT et al (2008) Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 247:871–879

    Article  PubMed  Google Scholar 

  28. Wright AS, Sampson LA, Warner TF et al (2005) Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 236:132–139

    Article  PubMed  Google Scholar 

  29. Yin XY, Xie XY, Lu MD et al (2009) Percutaneous thermal ablation of medium and large hepatocellular carcinoma: long-term outcome and prognostic factors. Cancer 115:1914–1923

    Article  PubMed  CAS  Google Scholar 

  30. Yu J, Liang P, Yu X et al (2011) Ultrasound-guided percutaneous microwave ablation of splenic metastasis: report of four cases and literature review. Int J Hyperthermia 27:517–522

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, R., Rempp, H. & Clasen, S. Mikrowellenablation. Radiologe 52, 22–28 (2012). https://doi.org/10.1007/s00117-011-2208-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-011-2208-9

Schlüsselwörter

Keywords

Navigation