Skip to main content

Advertisement

Log in

3-Tesla-Magnetresonanztomographie zur Untersuchung von Kindern und Erwachsenen mit angeborenen Herzfehlern

3 tesla magnetic resonance imaging in children and adults with congenital heart disease

  • Übersichten
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die kardiovaskuläre Magnetresonanztomographie (MRT) hat sich zu einer etablierten bildgebenden Methode zur Untersuchung von Patienten mit angeborenen Herzfehlern entwickelt. Sie erlaubt in einer einzigen Untersuchung die exakte Beurteilung von Anatomie, globaler und regionaler Funktion, Blutflüssen sowie der myokardialen Perfusion und Vitalität. In der klinischen Routine erfolgen die Untersuchungen zumeist bei einer Feldstärke von 1,5 Tesla (T), mittlerweile gibt es jedoch Geräte und Bildgebungstechniken, die die kardiovaskuläre MRT auch bei 3 T ermöglichen. Der wesentliche Vorteil der MRT bei 3 T ist das höhere Signal-zu-Rausch-Verhältnis, das sowohl zu einer Verbesserung der Bildqualität als auch zu einer Verkürzung der Untersuchungszeit genutzt werden kann. Darüber hinaus bestehen verschiedene andere Unterschiede gegenüber Systemen mit niedriger Feldstärke, die im praktischen Einsatz beachtet werden müssen. Dieser Artikel beschreibt die Erfahrungen der 3-T-MRT für die Untersuchung von Patienten mit angeborenen Herzfehlern anhand methodischer Betrachtungen und Beispiele.

Abstract

Cardiovascular magnetic resonance imaging (CMR) has become a routinely used imaging modality for congenital heart disease. A CMR examination allows the assessment of thoracic anatomy, global and regional cardiac function, blood flow in the great vessels and myocardial viability and perfusion. In the clinical routine cardiovascular MRI is mostly performed at field strengths of 1.5 Tesla (T). Recently, magnetic resonance systems operating at a field strengths of 3 T became clinically available and can also be used for cardiovascular MRI. The main advantage of CMR at 3 T is the gain in the signal-to-noise ratio resulting in improved image quality and/or allowing higher acquisition speed. Several further differences compared to MRI systems with lower field strengths have to be considered for practical applications. This article describes the impact of CMR at 3 T in patients with congenital heart disease by meanings of methodical considerations and case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Abolmaali ND, Esmaeili A, Feist P et al (2004) Reference values of MRI flow measurements of the pulmonary outflow tract in healthy children. Rofo 176:837–845

    CAS  PubMed  Google Scholar 

  2. Araoz PA, Glockner JF, McGee KP et al (2005) 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 3:559–564

    Article  Google Scholar 

  3. Barth MM, Smith MP, Pedrosa I et al (2007) Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics 27:1445–1462

    Article  PubMed  Google Scholar 

  4. Baudendistel KT, Heverhagen JT, Knopp MV (2004) Klinische MRT bei 3 Tesla: Aktueller Stand. Radiologe 44:11–18

    Article  CAS  PubMed  Google Scholar 

  5. Beerbaum P, Körperich H, Barth P et al (2001b) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103:2476–2482

    CAS  PubMed  Google Scholar 

  6. Brix G, Schulz O, Griebel J (2002) Begrenzung der HF-Exposition von Patienten bei MR-Untersuchungen. Radiologe 42:51–61

    Article  CAS  PubMed  Google Scholar 

  7. Conolly SM, Nishimura DG, Macovski A, Glover G (1988) Variable-rate selective excitation. J Magn Reson 78:440–458

    Google Scholar 

  8. Deshpande VS, Shea SM, Li D (2003) Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med 49:803–809

    Article  PubMed  Google Scholar 

  9. Di Bella EV, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54:1295–1299

    Article  Google Scholar 

  10. Ferreira P, Gatehouse P, Kellman P et al (2009) Variability of myocardial perfusion dark rim Gibbs artifacts due to sub-pixel shifts. Cardiovasc Magn Reson 11:17

    Article  Google Scholar 

  11. Fratz S, Hess J, Schwaiger M et al (2002) More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with Fontan circulation. Circulation 106:1510–1513

    Article  PubMed  Google Scholar 

  12. Fukatsu H (2003) 3T MR for clinical use: update. Magn Reson Med Sci 1:37–45

    Article  Google Scholar 

  13. Greil GF, Stuber M, Botnar RM et al (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908–911

    Article  PubMed  Google Scholar 

  14. Gutberlet M, Noeske R, Schwinge K et al (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 tesla. Invest Radiol 41:154–167

    Article  PubMed  Google Scholar 

  15. Hennig J, Scheffler K (2006) Hyperechoes. Magn Reson Med 46:6–12

    Article  Google Scholar 

  16. IEC 60601–2-33. MR Safety, 2nd edn. 2002. Deutsche Fassung EN 60601–2-33:2002

  17. Ishida M, Kato S, Sakuma H (2009) Cardiac MRI in ischemic heart disease. Circulation J 73:1577–1588

    Article  Google Scholar 

  18. Kaul MG, Stork A, Bansmann PM et al (2004) Evaluation of balanced steady-state free precession (TrueFISP) and K-space segmented gradient echo sequences for 3D coronary MR angiography with navigator gating at 3 Tesla. Rofo 11:1560–1565

    Google Scholar 

  19. Kellenberger CJ, Yoo SJ, Büchel ER (2007) Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics 27:5–18

    Article  PubMed  Google Scholar 

  20. Klumpp BD, Sandstede J, Lodemann KP et al (2009) Intraindividual comparison of myocardial delayed enhancement MR imaging gadobenate dimeglumine at 1,5 T and 3 T. Eur Radiol 19:1124–1131

    Article  PubMed  Google Scholar 

  21. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    Article  CAS  PubMed  Google Scholar 

  22. Lee VS, Spritzer CE, Carroll BA et al (1997) Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. Am J Roentgenol 169:1125–1131

    CAS  Google Scholar 

  23. Ley S, Eichhorn J, Ley-Zaporozhan J et al (2007) Evaluation of aortic regurgitation in congenital heart disease: value of MR imaging in comparison to echocardiography. Pediatr Radiol 37:426–436

    Article  PubMed  Google Scholar 

  24. Lim RP, Shapiro M, Wang EY et al (2008) 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced bolus-chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol 29:1847–1854

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Bi X, Huang J et al (2008) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 43:663–668

    Article  PubMed  Google Scholar 

  26. Lotz J, Döker R, Noeske R et al (2005) In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging 21:604–610

    Article  PubMed  Google Scholar 

  27. Marcotte F, Poirier N, Pressacco J et al (2009) Evaluation of adult congenital heart disease by cardiac magnetic resonance imaging. Congenit Heart Dis 4:216–230

    Article  PubMed  Google Scholar 

  28. Meyer C, Strach K, Thomas D et al (2008) High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease. Eur Radiol 18:226–233

    Article  PubMed  Google Scholar 

  29. Michaely HJ, Nael K, Schoenberg SO et al (2006) Analysis of cardiac function – comparison between 1.5 Tesla and 3.0 Tesla cardiac cine magnetic resonance imaging: preliminary experience. Invest Radiol 41:133–140

    Article  PubMed  Google Scholar 

  30. Nagel E, Bauer W, Sechtem U et al (2007) Klinische Indikationen für die kardiovaskuläre Magnetresonanztomographie (CMR). Clin Res Cardiol 2 [suppl 2]:77–96

  31. Nayak KS, Cunningham CH, Santos JM, Pauly JM (2004) Real-time cardiac MRI at 3 tesla. Magn Reson Med 4:655–660

    Article  Google Scholar 

  32. Nayak KS, Lee HL, Hargreaves BA, Hu BS (2007) Wideband SSFP: alternating repetition time balanced steady state free precession with increased band spacing. Magn Reson Med 58:931–938

    Article  PubMed  Google Scholar 

  33. Neubauer S (2003) Cardiac magnetic resonance spectroscopy. Curr Cardiol Rep 5:75–82

    Article  PubMed  Google Scholar 

  34. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 52:952–962

    Article  Google Scholar 

  35. Rathi VK, Doyle M, Yamrozik J et al (2008) Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson 10:36

    Article  PubMed  Google Scholar 

  36. Schär M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 51:799–806

    Article  PubMed  Google Scholar 

  37. Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

    Article  PubMed  Google Scholar 

  38. Schmitt F, Grosu D, Mohr C et al (2004) 3 Tesla-MRT: Der Erfolg höherer Feldstärken. Radiologe 44:31–48

    Article  CAS  PubMed  Google Scholar 

  39. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  40. Sommer T, Hackenbroch M, Hofer U et al (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 3:718–725

    Article  Google Scholar 

  41. Su MY, Yang KC, Wu CC et al (2007) First-pass myocardial perfusion cardiovascular magnetic resonance at 3 Tesla. J Cardiovasc Magn Reson 4:633–644

    Article  Google Scholar 

  42. Wald RM et al (2009) Refining the assessment of pulmonary regurgitation in adults after tetralogy of Fallot repair: should we be measuring regurgitant fraction or regurgitant volume? Eur Heart J 30:356–361

    Article  PubMed  Google Scholar 

  43. Weigel M, Hennig J (2006) Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 55:826–835

    Article  PubMed  Google Scholar 

  44. Wieben O, Francois C, Reeder SB (2008) Cardiac MRI of ischemic heart disease at 3T: potential and challenges. Eur J Radiol 65:15–28

    Article  PubMed  Google Scholar 

  45. Willinek WA, Hadizadeh DR, von Falkenhausen M et al (2008) 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging 27:1455–1460

    Article  PubMed  Google Scholar 

  46. Young AA, Cowan BR, Schoenberg SO, Wintersberger BJ (2008) Feasibility of single breath-hold left ventricular function with 3 Tesla TSENSE acquisition and 3D modeling analysis. J Cardiovasc Magn Reson 10:24

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken der Fördergemeinschaft Deutsche Kinderherzzentren e.V. (http://www.fg-dkhz.de) für die finanzielle Unterstützung bei der Etablierung der kardialen MRT bei 3 Tesla in unserem Zentrum. Außerdem danken wir Frau Traudel Hansen, Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, für ihre tatkräftige Hilfe im Rahmen der MRT-Untersuchungen. Sowie Herrn Dr. Jürgen Bunke, Herrn Dr. Bernhard Schnackenburg und Herrn Rainer Sokolowski von der Philips MedizinSysteme GmbH.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rickers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voges, I., Jerosch-Herold, M., Helle, M. et al. 3-Tesla-Magnetresonanztomographie zur Untersuchung von Kindern und Erwachsenen mit angeborenen Herzfehlern. Radiologe 50, 799–808 (2010). https://doi.org/10.1007/s00117-010-2025-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2025-6

Schlüsselwörter

Keywords

Navigation