Skip to main content
Log in

Pathophysiologie antikörperassoziierter ZNS-Erkrankungen

Pathophysiology of antibody-associated diseases of the central nervous system

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Antikörper gegen intrazelluläre Antigene sind seit den 1980er/1990er Jahren bekannt. Die in den letzten Jahren entdeckten Antikörper gegen Oberflächenantigene sind aber in zweierlei Hinsicht „interessanter“ als jene: Sie verheißen ein besseres Ansprechen auf Immuntherapien und sie sind vermutlich selbst pathogen, was die Krankheitsmechanismen verstehen hilft. Dabei gibt es einerseits destruktive, irreversible Effekte der Antikörper gegen mit spannungsabhängigen Kaliumkanälen komplexierte Antigene (VGKC-Komplex-Antikörper, und zwar Antikörper gegen „leucine-rich glioma inactivated 1“ [LGI1]), andererseits reversible, funktionelle Wirkungen (wie z. B. bei den Antikörpern gegen den N-Methyl-D-Aspartat-Rezeptor, die zu einer Internalisierung dieser Rezeptoren, nicht aber zu einer Zellzerstörung führen; aber auch LGI1-Antikörper scheinen funktionelle, epileptogene Effekte zu erzeugen). Diese sich entwickelnden Erkenntnisse machen plausibel, warum antikörpersenkende Therapien Chancen auf eine Wiederherstellung der Gesundheit bei betroffenen Patienten bieten.

Summary

Antibodies against intracellular antigens have been known since the 1980s and 1990s but in recent years antibodies against surface antigens have also been discovered. These are “more interesting” than those to intracellular targets in two respects: they result in a better response to immunotherapy and are probably directly pathogenic, which helps to understand the disease mechanisms. There are the destructive and irreversible effects of the antibodies to antigens that are complexed with voltage-gated potassium channels (VGKC complex antibodies), especially antibodies to leucine-rich glioma inactivated 1 (LGI1) on the one hand. On the other hand, antibodies may have reversible functional effects, such as antibodies against the N-methyl-D-aspartate receptor, which cause an internalization of these receptors but do not lead to cell destruction: LGI1 antibodies also seem to have functional, in this case epileptogenic effects. These emerging findings make plausible why antibody-reducing therapies provide opportunities for the restoration of health in affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Bien CG, Urbach H, Schramm J et al (2007) Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology 69:1236–1244

    Article  PubMed  CAS  Google Scholar 

  2. Bien CG, Vincent A, Barnett MH et al (2012) Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135:1622–1638

    Article  PubMed  Google Scholar 

  3. Brain L, Jellinek EH, Ball K (1966) Hashimoto’s disease and encephalopathy. Lancet 2:512–514

    Article  PubMed  CAS  Google Scholar 

  4. Cunningham J, Graus F, Anderson N et al (1986) Partial characterization of the Purkinje cell antigens in paraneoplastic cerebellar degeneration. Neurology 36:1163–1168

    Article  PubMed  CAS  Google Scholar 

  5. Dalmau J, Rosenfeld MR (2008) Paraneoplastic syndromes of the CNS. Lancet Neurol 7:327–340

    Article  PubMed  Google Scholar 

  6. Graus F, Dalmau J (2012) Paraneoplastic neurological syndromes. Curr Opin Neurol

  7. Graus F, Elkon KB, Lloberes P et al (1987) Neuronal antinuclear antibody (anti-Hu) in paraneoplastic encephalomyelitis simulating acute polyneuritis. Acta Neurol Scand 75:249–252

    Article  PubMed  CAS  Google Scholar 

  8. Graus F, Saiz A, Dalmau J (2010) Antibodies and neuronal autoimmune disorders of the CNS. J Neurol 257:509–517

    Article  PubMed  CAS  Google Scholar 

  9. Hughes EG, Peng X, Gleichman AJ et al (2010) Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 30:5866–5875

    Article  PubMed  CAS  Google Scholar 

  10. Irani SR, Alexander S, Waters P et al (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133:2734–2748

    Article  PubMed  Google Scholar 

  11. Khan NL, Jeffree MA, Good C et al (2009) Histopathology of VGKC antibody-associated limbic encephalitis. Neurology 72:1703–1705

    Article  PubMed  CAS  Google Scholar 

  12. Kothbauer-Margreiter I, Sturzenegger M, Komor J et al (1996) Encephalopathy associated with Hashimoto thyroiditis: diagnosis and treatment. J Neurol 243:585–593

    Article  PubMed  CAS  Google Scholar 

  13. Lai M, Hughes EG, Peng X et al (2009) AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann eurol 65:424–434

    Article  CAS  Google Scholar 

  14. Lai M, Huijbers MG, Lancaster E et al (2010) Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 9:776–785

    Article  PubMed  CAS  Google Scholar 

  15. Lalic T, Pettingill P, Vincent A et al (2011) Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission. Epilepsia 52:121–131

    Article  PubMed  Google Scholar 

  16. Lancaster E, Huijbers MG, Bar V et al (2011) Investigations of Caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol 69:303–311

    Article  PubMed  CAS  Google Scholar 

  17. Leypoldt F, Buchert R, Kleiter I et al (2012) Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 83:681–686

    Article  PubMed  Google Scholar 

  18. Llado A, Mannucci P, Carpentier AF et al (2004) Value of Hu antibody determinations in the follow-up of paraneoplastic neurologic syndromes. Neurology 63:1947–1949

    Article  PubMed  CAS  Google Scholar 

  19. Malter MP, Helmstaedter C, Urbach H et al (2010) Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 67:470–478

    Article  PubMed  Google Scholar 

  20. Manto M, Dalmau J, Didelot A et al (2010) In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction. Orphanet J Rare Dis 5:31

    Article  PubMed  Google Scholar 

  21. Manto MU, Laute MA, Aguera M et al (2007) Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann Neurol 61:544–551

    Article  PubMed  CAS  Google Scholar 

  22. Pakozdy A, Gruber A, Kneissl S et al (2011) Complex partial cluster seizures in cats with orofacial involvement. J Feline Med Surg 13:687–693

    Article  PubMed  Google Scholar 

  23. Pakozdy A, Halasz P, Klang A et al (2013) Suspected limbic encephalitis and seizure in cats associated woth voltage-gated potassium channel (VGKC) complex antibody. Vet Internal Med (im Druck)

  24. Park DC, Murman DL, Perry KD et al (2007) An autopsy case of limbic encephalitis with voltage-gated potassium channel antibodies. Eur J Neurol 14:e5–e6

    Article  PubMed  CAS  Google Scholar 

  25. Poepel A, Jarius S, Heukamp LC et al (2007) Neurological course of long-term surviving patients with SCLC and anti-Hu syndrome. J Neurol Sci 263:145–148

    Article  PubMed  CAS  Google Scholar 

  26. Saiz A, Blanco Y, Sabater L et al (2008) Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 131:2553–2563

    Article  PubMed  Google Scholar 

  27. Soeder BM, Urbach H, Elger CE et al (2005) VGKC-Antikörper-assoziierte limbische Enzephalitis Limbic encephalitis associated with autoantibodies against voltage-gated potassium channels. Nervenarzt 76:760–762

    Article  PubMed  CAS  Google Scholar 

  28. Solimena M, Folli F, Denis Donini S et al (1988) Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med 318:1012–1020

    Article  PubMed  CAS  Google Scholar 

  29. Sommer C, Weishaupt A, Brinkhoff J et al (2005) Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 365:1406–1411

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka K, Tanaka M, Igarashi S et al (1995) Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 2. Passive transfer of murine mononuclear cells activated with recombinant Yo protein to paraneoplastic cerebellar degeneration lymphocytes in severe combined immunodeficiency mice. Clin Neurol Neurosurg 97:101–105

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka K, Tanaka M, Onodera O et al (1994) Passive transfer and active immunization with the recombinant leucine-zipper (Yo) protein as an attempt to establish an animal model of paraneoplastic cerebellar degeneration. J Neurol Sci 127:153–158

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka M, Tanaka K, Onodera O et al (1995) Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 1. Mouse strains bearing different MHC molecules produce antibodies on immunization with recombinant Yo protein, but do not cause Purkinje cell loss. Clin Neurol Neurosurg 97:95–100

    Article  PubMed  CAS  Google Scholar 

  33. Tüzün E, Zhou L, Baehring JM et al (2009) Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol 118:737–743

    Article  PubMed  Google Scholar 

  34. Vincent A, Bien CG, Irani SR et al (2011) Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 10:759–772

    Article  PubMed  CAS  Google Scholar 

  35. Voltz R (2002) Paraneoplastische neurologische Autoimmunerkrankungen. Nervenarzt 73:909–929

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Q, Tanaka K, Sun P et al (2012) Suppression of synaptic plasticity by cerebrospinal fluid from anti-NMDA receptor encephalitis patients. Neurobiol Dis 45:610–615

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: C.G. Bien führt im Labor seiner Klinik Serum- und Liquordiagnostik bezüglich der im Text beschriebenen Antikörper durch. Für diese Diagnostik rechnet seine Klinik mit auswärtigen Einsendern Gebühren ab. C.G. Bien erhielt Reisekostenunterstützung von folgenden Firmen: Eisai, UCB, Desitin, Grifols; Vortragshonorare von folgenden Firmen: Eisai, UCB, GlaxoSmithKline, Desitin; Honorare für Mitarbeit in Advisory Boards der folgenden Firmen: UCB, Eisai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.G. Bien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bien, C., Bauer, J. Pathophysiologie antikörperassoziierter ZNS-Erkrankungen. Nervenarzt 84, 466–470 (2013). https://doi.org/10.1007/s00115-012-3606-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-012-3606-6

Schlüsselwörter

Keywords

Navigation