Skip to main content
Log in

Akuter ischämischer Schlaganfall

Neue Ansätze in der Antithrombosetherapie

Acute ischemic stroke

New approaches to antithrombotic treatment

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die derzeit einzige empfohlene medikamentöse Akuttherapie des ischämischen Schlaganfalls ist die Thrombolyse innerhalb des 4,5- (bis 6-)Stunden-Fensters. In der (frühen) Sekundärprophylaxe kommen Thrombozytenaggregationshemmer und, bei kardialer Emboliequelle, Antikoagulanzien zum Einsatz. Die genannten Substanzen sind jedoch entweder nur moderat wirksam (Thrombozytenaggregationshemmer) oder gehen mit einem signifikanten Blutungsrisiko einher (rt-PA, Antikoagulanzien). Obwohl der überwiegende Teil der Schlaganfälle durch lokale oder embolische Gefäßverschlüsse hervorgerufen wird, ist über die Rolle von Blutplättchen bei der akuten Schlaganfallentwicklung im Hirnkreislauf selbst bisher erstaunlich wenig bekannt. Die Entwicklung transgener Mauslinien ermöglichte es in den letzten Jahren, elementare Schritte der Thrombusbildung nach zerebraler Ischämie auf Ebene der Blutplättchen und der plasmatischen Blutgerinnung im Schlaganfallmodell zu analysieren. Dabei fand man, dass eine Verhinderung der frühen Adhäsion von Blutplättchen an die Gefäßwand über die Ausschaltung der Blutplättchenoberflächenrezeptoren GPIbα und GPVI dramatische Effekte auf die Schlaganfallgröße und das funktionelle Defizit hat, ohne dass dadurch die Blutungsgefahr ansteigt. Darüber hinaus konnte entgegen der vorherrschenden Lehrmeinung gezeigt werden, dass die Aktivierung des intrinsischen Gerinnungssystems über den Blutgerinnungsfaktor XIIa (FXIIa) entscheidend an der Thrombusbildung beim Schlaganfall beteiligt ist. Auf Grundlage dieser Beobachtungen wurden spezifische GPIbα- und FXIIa-Inhibitoren entwickelt, die im Experiment vor Schlaganfällen schützen, aber nicht mit den gefürchteten Blutungskomplikationen einhergehen. Diese Substanzen bilden die Basis für das neue Konzept einer „blutungsrisikofreien Antithrombose“ beim ischämischen Schlaganfall und anderen thrombembolischen Erkrankungen, welches derzeit die präklinische Entwicklung durchläuft.

Abstract

The only recommended therapy in the acute phase of ischemic stroke is thrombolysis within 4.5–(6) h after symptom onset. For secondary stroke prevention platelet inhibitors or, in cases of cardiac embolism, anticoagulants are used. However, these substances bear significant limitations: either they show only moderate efficacy (platelet inhibitors), or they are associated with a considerable bleeding risk (rt-PA, anticoagulants). Although the majority of strokes are caused by embolic or thrombotic vessel occlusion, strikingly little is known about the pathophysiological role of platelets and their local function in the brain vasculature. The recent development of novel transgenic mouse lines paved the way for the in-depth analysis of the different molecular steps of thrombus formation involving platelets and the plasma coagulation cascade in models of acute ischemic stroke. It was demonstrated that prevention of early platelet adhesion to the damaged vessel wall by blocking the platelet surface receptors GPIbα or GPVI dramatically protects against experimental stroke without increasing the frequency of intracranial hemorrhage. Moreover, the critical involvement of the blood coagulation factor XII (FXII)-driven intrinsic coagulation cascade in thrombus formation during the course of ischemic brain damage could be unraveled thereby disproving established concepts of hemostasis. Based on these findings novel pharmacological blockers of GPIbα and FXIIa were designed that likewise proved to be safe and effective in animal stroke studies. Those compounds now lay the groundwork for a novel and intriguing concept in ischemic stroke and other thromboembolic diseases: antithrombosis devoid of any bleeding complications. Further preclinical testing is currently ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adams HP Jr, Effron MB, Torner J et al (2008) Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke 39:87–99

    Article  PubMed  CAS  Google Scholar 

  2. Al-Tamimi M, Gardiner EE, Thom JY et al (2011) Soluble glycoprotein VI is raised in the plasma of patients with acute ischemic stroke. Stroke 42:498–500

    Article  PubMed  CAS  Google Scholar 

  3. Baker RI, Eikelboom J, Lofthouse E et al (2001) Platelet glycoprotein Ibalpha Kozak polymorphism is associated with an increased risk of ischemic stroke. Blood 98:36–40

    Article  PubMed  CAS  Google Scholar 

  4. Berger C, Stauder A, Xia F, Sommer C (2007) Neuroprotection and glutamate attenuation by acetylsalicylic acid in temporary but not in permanent cerebral ischemia. Exp Neurol 210:543–548

    Article  PubMed  Google Scholar 

  5. Berger C, Xia F, Schäbitz WR et al (2004) High-dose aspirin is neuroprotective in a rat focal ischemia model. Brain Res 998:237–242

    Article  PubMed  CAS  Google Scholar 

  6. Bergmeier W, Schulte V, Brockhoff G et al (2002) Flow cytometric detection of activated mouse integrin alphaIIbbeta3 with a novel monoclonal antibody. Cytometry 48:80–86

    Article  PubMed  CAS  Google Scholar 

  7. Berndt MC, Shen Y, Dopheide SM et al (2001) The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Hemost 86:178–188

    CAS  Google Scholar 

  8. Bhatt DL, Topol EJ (2003) Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov 2:15–28

    Article  PubMed  CAS  Google Scholar 

  9. Bongers TN, Maat MP de, Goor ML van et al (2006) High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke 37:2672–2677

    Article  PubMed  CAS  Google Scholar 

  10. Bousser MG, Amarenco P, Chamorro A et al (2011) Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): a randomised, double-blind, parallel-group trial. Lancet 377:2013–2022

    Article  PubMed  CAS  Google Scholar 

  11. Bräuninger S, Kleinschnitz C (2009) Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Transl Stroke Med 25(1):8

    Article  Google Scholar 

  12. Braun A, Varga-Szabo D, Kleinschnitz C et al (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113:2056–2063

    Article  PubMed  CAS  Google Scholar 

  13. CAST (Chinese Acute Stroke Trial) Collaborative Group (1997) CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. Lancet 349:1641–1649

    Article  Google Scholar 

  14. Choudhri TF, Hoh BL, Prestigiacomo CJ et al (1999) Targeted inhibition of intrinsic coagulation limits cerebral injury in stroke without increasing intracerebral hemorrhage. J Exp Med 190:91–99

    Article  PubMed  CAS  Google Scholar 

  15. Choudhri TF, Hoh BL, Zerwes HG et al (1998) Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIIa receptor-mediated platelet aggregation. J Clin Invest 102:1301–1310

    Article  PubMed  CAS  Google Scholar 

  16. Connolly SJ, Ezekowitz MD, Yusuf S et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361:1139–1151

    Article  PubMed  CAS  Google Scholar 

  17. Coutts SB, Goyal M (2009) When recanalization does not improve clinical outcomes. Stroke 40:2661

    Article  PubMed  Google Scholar 

  18. DGN-Leitlinien www.dgn.org/-leitlinien-online.html

  19. Dai K, Gao W, Ruan C (2001) The Sma I polymorphism in the von Willebrand factor gene associated with acute ischemic stroke. Thromb Res 104:389–395

    Article  PubMed  CAS  Google Scholar 

  20. Davie EW, Ratnoff OD (1964) Waterfall sequence for intrinsic blood clotting. Science 145:1310–1312

    Article  PubMed  CAS  Google Scholar 

  21. Del Zoppo GJ (1998) The role of platelets in ischemic stroke. Neurology 51:S 9–S 14

    Google Scholar 

  22. Del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894

    Google Scholar 

  23. De Meyer SF, Deckmyn H, Vanhoorelbeke K (2009) von Willebrand factor to the rescue. Blood 113:5049–5057

    Article  Google Scholar 

  24. De Meyer SF, Schwarz T, Deckmyn H et al (2010) Binding of von Willebrand factor to collagen and glycoprotein Ibalpha, but not to glycoprotein IIb/IIIa, contributes to ischemic stroke in mice – brief report. Arterioscler Thromb Vasc Biol 30:1949–1951

    Article  Google Scholar 

  25. Denis CV, Wagner DD (2007) Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler Thromb Vasc Biol 27:728–739

    Article  PubMed  CAS  Google Scholar 

  26. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  PubMed  CAS  Google Scholar 

  27. Elvers M, Stegner D, Hagedorn I et al (2010) Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal 3(103):ra1

    Article  PubMed  Google Scholar 

  28. Esmon CT (2010) Far from the heart: counteracting coagulation. Nat Med 16:759–760

    Article  PubMed  CAS  Google Scholar 

  29. Feigin VL, Lawes CMM, Bennett DA et al (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    Article  PubMed  Google Scholar 

  30. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  PubMed  CAS  Google Scholar 

  31. Fujioka M, Hayakawa K, Mishima K et al (2010) ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating post-ischemic hypoperfusion. Blood 115:1650–1653

    Article  PubMed  CAS  Google Scholar 

  32. Gailani D, Renné T (2007) Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol 27:2507–2513

    Article  PubMed  CAS  Google Scholar 

  33. Girolami A, Gavasso S, Pacquola E et al (2005) Comparable levels of activity and antigen in factor XII deficiency: a study of 21 homozygotes and 58 heterozygotes. Clin Appl Thromb Hemost 11:335–338

    Article  PubMed  CAS  Google Scholar 

  34. Goerge T, Ho-Tin-Noe B, Carbo C et al (2008) Inflammation induces hemorrhage in thrombocytopenia. Blood 111:4958–4964

    Article  PubMed  CAS  Google Scholar 

  35. Govers-Riemslag JW, Smid M, Cooper JA (2007) The plasma kallikrein-kinin system and risk of cardiovascular disease in men. J Thromb Haemost 5:1896–903

    Article  PubMed  CAS  Google Scholar 

  36. Grosse J, Braun A, Varga-Szabo D et al (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117:3540–3550

    Article  PubMed  CAS  Google Scholar 

  37. Grüner S, Prostredna M, Schulte V et al (2003) Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood 102:4021–4027

    Article  PubMed  Google Scholar 

  38. Hacke W, Furlan AJ, Al-Rawi Y et al (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion – diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8:141–150

    Article  PubMed  CAS  Google Scholar 

  39. Hagedorn I, Schmidbauer S, Pleines I et al (2010) Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 121:1510–1517

    Article  PubMed  CAS  Google Scholar 

  40. Hankey GJ, Eikelboom JW (2010) Antithrombotic drugs for patients with ischaemic stroke and transient ischaemic attack to prevent recurrent major vascular events. Lancet Neurol 9:273–284

    Article  PubMed  CAS  Google Scholar 

  41. International Stroke Trial Collaborative Group (1997) The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet 349:1569–1581

    Article  Google Scholar 

  42. Kannemeier C, Shibamiya A, Nakazawa F et al (2007) Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 104:6388–6393

    Article  PubMed  CAS  Google Scholar 

  43. Kleinschnitz C, Stoll G, Bendszus M et al (2006) Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 203:513–518

    Article  PubMed  CAS  Google Scholar 

  44. Kleinschnitz C, Pozgajova M, Pham M et al (2007) Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 115:2323–2330

    Article  PubMed  CAS  Google Scholar 

  45. Kleinschnitz C, De Meyer SF, Schwarz T et al (2009) Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 113:3600–3603

    Article  PubMed  CAS  Google Scholar 

  46. Lees KR, Bluhmki E, Kummer R von et al (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375:1695–1703

    Article  PubMed  CAS  Google Scholar 

  47. Levy DE, Zoppo GJ del, Demaerschalk BM et al (2009) Ancrod in acute ischemic stroke: results of 500 subjects beginning treatment within 6 hours of stroke onset in the ancrod stroke program. Stroke 40:3796–3803

    Article  PubMed  Google Scholar 

  48. Levy GG, Nichols WC, Lian EC et al (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488–494

    Article  PubMed  CAS  Google Scholar 

  49. Libersan D, Khalil A, Dagenais P et al (1998) The low molecular weight heparin enoxaparin limits infarct size at reperfusion in the dog. Cardiovasc Res 37:656–666

    Article  PubMed  CAS  Google Scholar 

  50. Macfarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499

    Article  PubMed  CAS  Google Scholar 

  51. Mackman N (2004) Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 24:1015–1022

    Article  PubMed  CAS  Google Scholar 

  52. Mary V, Wahl F, Uzan A et al (2001) Enoxaparin in experimental stroke: neuroprotection and therapeutic window of opportunity. Stroke 32:993–999

    Article  PubMed  CAS  Google Scholar 

  53. Massberg S, Gawaz M, Grüner S et al (2003) A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197:41–49

    Article  PubMed  CAS  Google Scholar 

  54. Müller F, Mutch NJ, Schenk WA et al (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139:1143–1156

    Article  PubMed  Google Scholar 

  55. Nieswandt B, Schulte V, Bergmeier W (2001) Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 193:459–469

    Article  PubMed  CAS  Google Scholar 

  56. Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102:449–461

    Article  PubMed  CAS  Google Scholar 

  57. Nieswandt B Stoll G (2010) The smaller, the better: VWF in stroke. Blood 115:1477–1478

    Article  PubMed  CAS  Google Scholar 

  58. Okada Y, Copeland BR, Fitridge R et al (1994) Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 25:1847–1853

    Article  PubMed  CAS  Google Scholar 

  59. Pfeilschifter W, Spitzer D, Czech-Zechmeister B et al (2011) Increased risk of hemorrhagic transformation in ischemic stroke occurring during warfarin anticoagulation: an experimental study in mice. Stroke 42:1116–1121

    Article  PubMed  CAS  Google Scholar 

  60. Pham M, Helluy X, Kleinschnitz C et al (2011) Sustained reperfusion after blockade of glycoprotein-receptor-Ib in focal cerebral ischemia: an MRI study at 17.6 Tesla. PLoS One 6:e18386

    Article  PubMed  CAS  Google Scholar 

  61. Pratt J, Boudeau P, Uzan A et al (1998) Enoxaparin reduces cerebral edema after photothrombotic injury in the rat. Haemostasis 28:78–85

    PubMed  CAS  Google Scholar 

  62. Reiner AP, Kumar PN, Schwartz SM et al (2000) Genetic variants of platelet glycoprotein receptors and risk of stroke in young women. Stroke 31:1628–1633

    Article  PubMed  CAS  Google Scholar 

  63. Renné T, Pozgajová M, Grüner S et al (2005) Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 202:271–281

    Article  PubMed  Google Scholar 

  64. Rodgers RP, Levin J (1990) A critical reappraisal of the bleeding time. Semin Thromb Hemost 16:1–20

    Article  PubMed  CAS  Google Scholar 

  65. Rosen ED, Chan JC, Idusogie E et al (1997) Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 390:290–294

    Article  PubMed  CAS  Google Scholar 

  66. Salomon O, Steinberg DM, Koren-Morag N et al (2008) Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood 111:4113–4117

    Article  PubMed  CAS  Google Scholar 

  67. Sandercock PA, Counsell C, Kamal AK (2008) Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev 8:CD000024

    Google Scholar 

  68. Schäbitz WR, Ringelstein EB (Hrsg) (2009) Das stroke unit buch. UNI-MED, Bremen

  69. Shinohara Y, Katayama Y, Uchiyama S et al (2010) Cilostazol for prevention of secondary stroke (CSPS2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol 9:959–968

    Article  PubMed  CAS  Google Scholar 

  70. Siegerink B, Govers-Riemslag JW, Rosendaal FR et al (2010) Intrinsic coagulation activation and the risk of arterial thrombosis in young women: results from the Risk of Arterial Thrombosis in relation to Oral contraceptives (RATIO) case-control study. Circulation 122:1854–1861

    Article  PubMed  CAS  Google Scholar 

  71. Stegner D, Nieswandt B (2010) Platelet receptor signaling in thrombus formation. J Mol Med 89:109–121

    Article  PubMed  Google Scholar 

  72. Stoll G, Kleinschnitz C, Nieswandt B (2008) Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 112:3555–3562

    Article  PubMed  CAS  Google Scholar 

  73. Stoll G, Kleinschnitz C, Nieswandt B (2010) Combating innate inflammation: a new paradigm for acute treatment of stroke? Ann N Y Acad Sci 1207:149–154

    Article  PubMed  CAS  Google Scholar 

  74. Schie MC van, Maat MPM de, Isaacs A et al (2011) Variation in the von Willebrand Factor gene is associated with VWF levels and with the risk of cardiovascular disease. Blood 117:1393–1399

    Article  PubMed  Google Scholar 

  75. Varga-Szabo D, Braun A, Kleinschnitz C et al (2008) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205:1583–1591

    Article  PubMed  CAS  Google Scholar 

  76. Veltkamp R, Hacke W (2011) Neue orale Antikoagulanzien beim Vorhofflimmern. Nervenarzt 82:180–189

    Article  PubMed  CAS  Google Scholar 

  77. Vischer UM (2006) Von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 4:1186–1193

    Article  PubMed  CAS  Google Scholar 

  78. Wieberdink RG, Schie MC van, Koudstaal PJ et al (2010) High von Willebrand factor levels increase the risk of stroke. The Rotterdam study. Stroke 41:2151–2156

    Article  PubMed  CAS  Google Scholar 

  79. Wu D, Vanhoorelbeke K, Cauwenberghs N et al (2002) Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood 99:3623–3628

    Article  PubMed  CAS  Google Scholar 

  80. Yanaka K, Spellman SR, McCarthy JB et al (1996) Reduction of brain injury using heparin to inhibit leukocyte accumulation in a rat model of transient focal cerebral ischemia, I: protective mechanism. J Neurosurg 85:1102–1107

    Article  PubMed  CAS  Google Scholar 

  81. Yanaka K, Spellman SR, McCarthy JB et al (1996) Reduction of brain injury using heparin to inhibit leukocyte accumulation in a rat model of transient focal cerebral ischemia, II: dose-response effect and the therapeutic window. J Neurosurg 85:1108–1112

    Article  PubMed  CAS  Google Scholar 

  82. Zhang ZG, Zhang L, Tsang W et al (2001) Dynamic platelet accumulation at the site of the occluded middle cerebral artery and in downstream microvessels is associated with loss of microvascular integrity after embolic middle cerebral artery occlusion. Brain Res 912:181–194

    Article  PubMed  CAS  Google Scholar 

  83. Zhao BQ, Chauhan AK, Canault M, Patten IS, Yang JJ, Dockal M (2009) von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 114:3329–3334

    Article  PubMed  CAS  Google Scholar 

  84. Zheng X, Chung D, Takayama TK et al (2001) Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 276:41059–41063

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Einige der hier referierten Arbeiten wurden durch die Deutsche Forschungsgemeinschaft (DFG), SFB 688 (TP A13 und B1) unterstützt.

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: BN, GS und CK halten Patente zur Therapie thrombembolischer Erkrankungen mit anti-GPIb und anti-GPVI sowie FXIIa Inhibitoren. BN, GS und CK erhalten Forschungsunterstützung von der CSL Behring GmbH, Marburg. PK gibt keine Interessenkonflikte an.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kleinschnitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraft, P., Nieswandt, B., Stoll, G. et al. Akuter ischämischer Schlaganfall. Nervenarzt 83, 435–449 (2012). https://doi.org/10.1007/s00115-011-3368-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-011-3368-6

Schlüsselwörter

Keywords

Navigation