Skip to main content
Log in

Cell size versus body size in geophilomorph centipedes

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Variation in animal body size is the result of a complex interplay between variation in cell number and cell size, but the latter has seldom been considered in wide-ranging comparative studies, although distinct patterns of variation have been described in the evolution of different lineages. We investigated the correlation between epidermal cell size and body size in a sample of 29 geophilomorph centipede species, representative of a wide range of body sizes, from 6 mm dwarf species to gigantic species more than 200 mm long, exploiting the marks of epidermal cells on the overlying cuticle in the form of micro-sculptures called scutes. We found conspicuous and significant variation in average scute area, both between suprageneric taxa and between genera, while the within-species range of variation is comparatively small. This supports the view that the average epidermal cell size is to some extent taxon specific. However, regression analyses show that neither body size nor the number of leg-bearing segments explain this variation, which suggests that cell size is not an usual target of change for body size evolution in this group of arthropods, although there is evidence of its correlation with other morphological variables, like cuticle thickness. Scute sizes of miniaturized geophilomorph species are well within the range of the lineage to which the species belong, suggesting recent evolutionary transitions to smaller body size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arendt J (2007) Ecological correlates of body size in relation to cell size and cell number: patterns in flies, fish, fruits and foliage. Biol Rev 82:241–256

    Article  PubMed  Google Scholar 

  • Azevedo RBR, French V, Partridge L (2002) Temperature modulates epidermal cell size in Drosophila melanogaster. J Insect Physiol 48:231–237

    Article  CAS  PubMed  Google Scholar 

  • Beutel RG, Haas A (1998) Larval head morphology of Hydroscapha natans LeConte, 1874 (Coleoptera, Myxophaga, Hydroscaphidae) with special reference to miniaturization. Zoomorphology 18:103–116

    Article  Google Scholar 

  • Beutel RG, Pohl H, Hunefeld F (2005) Strepsipteran brains and effects of miniaturization (Insecta). Arthropod Struct Dev 34:301–313

    Article  Google Scholar 

  • Blomberg SP, Garland T Jr (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 10:899–910

    Article  Google Scholar 

  • Bonato L, Foddai D, Minelli A (2003) Evolutionary trends and patterns in centipede segment number based on a cladistic analysis of Mecistocephalidae (Chilopoda: Geophilomorpha). Syst Entomol 28:539–579

    Article  Google Scholar 

  • Bonato L, Drago L, Murienne J (2014a) Phylogeny of Geophilomorpha (Chilopoda) inferred from new morphological and molecular evidence. Cladistics 30:485–507

    Article  Google Scholar 

  • Bonato L, Edgecombe GD, Minelli A (2014b) Geophilomorph centipedes from the Cretaceous amber of Burma. Paleontology 57:97–110

    Article  Google Scholar 

  • Brena C, Cima F, Burighel P (2003) Alimentary tract of Kowalevskiidae (Appendicularia, Tunicata) and evolutionary implications. J Morph 258:225–238

    Article  PubMed  Google Scholar 

  • Cals P (1974) Mise en évidence, par le microscope électronique à balayage, de champs morphogénétiques polarisés, exprimés par les cellules épidermiques normales dans l’appendice locomoteur des Arthropodes: Tylos latreilli (Audouin) (Crustacé, Isopode) et Periplaneta americana (L.) (Insecte Dictyoptère). C R Acad Sci Paris 279D:663–666

    Google Scholar 

  • Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244

    Article  CAS  PubMed  Google Scholar 

  • De Moed GH, De Jong G, Scharloo W (1997) Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genet Res 70:35–43

  • Foddai D, Bonato L, Pereira L, Minelli A (2003) Phylogeny and systematics of the Arrupinae (Chilopoda: Geophilomorpha: Mecistocephalidae) with the description of a new dwarfed species. J Nat Hist 37:1247–1267

    Article  Google Scholar 

  • Fusco G (2005) Trunk segment numbers and sequential segmentation in myriapods. Evol Dev 7:608–617

    Article  PubMed  Google Scholar 

  • Fusco G, Minelli A (2013) Arthropod body segments and tagmata. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Molecules, development, morphology. Springer, Berlin, pp 197–221

    Chapter  Google Scholar 

  • Fusco G, Brena C, Minelli A (2000) Cellular processes in the growth of lithobiomorph centipedes (Chilopoda: Lithobiomorpha). A cuticular view. Zool Anz 239:91–102

    Google Scholar 

  • Gibson WT, Gibson MC (2009) Cell topology, geometry, and morphogenesis in proliferating epithelia. Curr Top Dev Biol 89:87–114

    Article  CAS  PubMed  Google Scholar 

  • Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of geometric order in proliferating metazoan epithelia. Nature 442:1038–1041

    Article  CAS  PubMed  Google Scholar 

  • Grassé PP (1975) La cuticule. In: Grassé PP (ed) Traité de Zoologie, Tome VIII, Fascicule III, Insectes: Téguments, Système nerveux. Organes sensoriels. Masson, Paris, pp 5–31

    Google Scholar 

  • Guillot C, Lecuit T (2013) Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340:1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Hinton HE (1970) Some little known surface structures. Symp R Ent Soc Lond 5:41–58

    Google Scholar 

  • Kristensen RM (1991) Loricifera. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates, Vol. 4, Aschelminthes. Wiley-Liss, New York, pp 351–375

    Google Scholar 

  • Leśniewska M, Bonato L, Minelli A, Fusco G (2009) Trunk anomalies in the centipede Stigmatogaster subterranea provide insight into late-embryonic segmentation. Arthropod Struct Dev 38:417–426

    Article  PubMed  Google Scholar 

  • Minelli A, Maruzzo D, Fusco G (2010) Multi-scale relationships between numbers and size in the evolution of arthropod body features. Arthropod Struct Dev 39:468–477

    Article  PubMed  Google Scholar 

  • Moussian B (2013) The arthropod cuticle. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Molecules, development, morphology. Springer, Berlin, pp 171–196

    Chapter  Google Scholar 

  • Neves RC, Sørensen KJK, Kristensen RM, Wanninger A (2009) Cycliophoran dwarf males break the rule: high complexity with low cell numbers. Biol Bull 217:2–5

    PubMed  Google Scholar 

  • Nijhout HF (2003) The control of body size in insects. Dev Biol 261:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF, Callier V (2015) Developmental mechanisms of body size and wing-body scaling in insects. Annu Rev Entomol 60:141–156

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF, Cinderella M, Grunert LW (2014) The development of wing shape in Lepidoptera: mitotic density, not orientation, is the primary determinant of shape. Evol Dev 16:68–77

    Article  PubMed  Google Scholar 

  • Partridge L, Barrie B, Fowler K, French V (1994) Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48:1269–1276

    Article  Google Scholar 

  • Pereira LA (2013) Discovery of a second geophilomorph species (Myriapoda: Chilopoda) having twenty-seven leg-bearing segments, the lowest number recorded up to the present in the centipede order Geophilomorpha. Pap Avulsos Zool (São Paulo) 53:163–185

    Article  Google Scholar 

  • Polilov AA (2015) Small is beautiful: features of the smallest insects and limits to miniaturization. Annu Rev Entomol 60:103–121

    Article  CAS  PubMed  Google Scholar 

  • Robertson FW (1959) Studies in quantitative inheritance. XII. Cell size and number in relation to genetic and environmental variation of body size in Drosophila. Genetics 44:869–896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenberg J, Müller CHG, Hilken G (2011) The Chilopoda—integument and associated organs—integument and cuticle. In: Minelli A (ed) Treatise on zoology—the Myriapoda, vol 1. Brill, Leiden, pp 67–70

    Google Scholar 

  • Roth G, Blanke J, Wake DB (1994) Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc Natn Acad Sci USA 91:4796–4800

    Article  CAS  Google Scholar 

  • Roth G, Rotluff B, Blanke J, Ohle M (1995) Brain size and morphology in miniaturized plethodontid salamanders. Brain Behav Evol 45:84–95

    Article  CAS  PubMed  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RD, Hill MF, Bryant PJ (1995) Organ and cell allometry in Hawaiian Drosophila: how to make a big fly. Proc R Soc Lond B 259:105–110

    Article  CAS  Google Scholar 

  • Stocker H, Hafen E (2000) Genetic control of cell size. Curr Opin Genet Dev 10:529–535

    Article  CAS  PubMed  Google Scholar 

  • Trumpp A, Refaeli Y, Thordur Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Luis Pereira for access to his detailed drawings of Dinogeophilus oligopodus and Ityphilus donatellae, Lucio Bonato for suggesting a possible correlation between scute size and cuticle thickness, and Leandro Drago for kindly allowing us to use a SEM photograph of his as our Fig. 1. Wallace Arthur, Lucio Bonato, Carsten H. G. Müller, and two anonymous referees provided insightful comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Fusco.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretto, M., Minelli, A. & Fusco, G. Cell size versus body size in geophilomorph centipedes. Sci Nat 102, 16 (2015). https://doi.org/10.1007/s00114-015-1269-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1269-4

Keywords

Navigation