Skip to main content
Log in

Explanative power of variables used in species distribution modelling: an issue of general model transferability or niche shift in the invasive Greenhouse frog (Eleutherodactylus planirostris)

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The use of species distribution models (SDMs) to predict potential distributions of species is steadily increasing. A necessary assumption when projecting models throughout space or time is that climatic niches are conservative, but recent findings of niche shifts during biological invasion of particular plant and animal species have indicated that this assumption is not categorically valid. One reason for observed shifts may relate to variable selection for modelling. In this study, we assess differences in climatic niches in the native and invasive ranges of the Greenhouse frog (Eleutherodactylus planirostris). We analyze which variables are more ‘conserved’ in comparison to more ‘relaxed’ variables (i.e. subject to niche shift) and how they influence transferability of SDMs developed with Maxent on the basis of ten bioclimatic layers best describing the climatic requirements of the target species. We focus on degrees of niche similarity and conservatism using Schoener's index and Hellinger distance. Significance of results are tested with null models. Results indicate that the degrees of niche similarity and conservatism vary greatly among the predictive variables. Some shifts can be attributed to active habitat selection, whereas others apparently reflect variation in the availability of climate conditions or biotic interactions between the frogs' native and invasive ranges. Patterns suggesting active habitat selection also vary among variables. Our findings evoke considerable implications on the transferability of SDMs over space and time, which is strongly affected by the choice and number of predictors. The incorporation of ‘relaxed’ predictors not or only indirectly correlated with biologically meaningful predictors may lead to erroneous predictions when projecting SDMs. We recommend thorough assessments of invasive species' ecology for the identification biologically meaningful predictors facilitating transferability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Article  Google Scholar 

  • Araújo MB, Pearson RG (2005) Equilibrium of species' distribution with climate. Ecography 28:693–695

    Article  Google Scholar 

  • Araújo MB, Cabeza M, Thullier W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Chang Biol 10:1618–1626

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Beard KH, Pitt WC (2005) Potential consequences of the coqui frog invasion in Hawaii. Divers Distrib 11:427–433

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecol Model 186:250–269

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Bomford M, Kraus F, Barry SC, Lawrence E (2009) Predicting establishment success for alien reptiles and amphibians: a role for climate matiching. Biol Invasions 11:1387–3547

    Article  Google Scholar 

  • Brand M, Grossenbacher K (1979) Untersuchungen zur Entwicklungsgeschwindigkeit der Larven von Triturus a. alpestris (Laurent 1768), Bufo b. bufo (Linnaeus 1758) und Rana t. temporaria (Linnaeus 1758) aus Populationen verschiedener Höhenstufen in den Schweizer Alpen. Selbstverlag, Bern

    Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Let 4:585–589

    Article  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic nich shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Brown JL, Twomey E (2009) Complicated histrories: three new species of poison frogs of the genus Ameerega (Anura: Dendrobatidae) from north-central Peru. Zootaxa 2049:1–38

    Google Scholar 

  • Busby JR (1991) BIOCLIM—a bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature, conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68

    Google Scholar 

  • Carpenter G, Gillison A, Winter J (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 2:667–680

    Article  Google Scholar 

  • Dundee HA, Rossman DA (1989) Amphibians and reptiles of Louisiana. Louisiana State University Press, Baton Rouge

    Google Scholar 

  • Ehrlich PR (1989) Attributes of the invaders and the invading process: vertebrates. In: Drake JA, Mooney HA, di Castri F, Groves RH, Wiliamson M (eds) Biological invasions: a global perspective. Wiley, New York, pp 315–328

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Perterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Shapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. MEE. doi:10.1111/j.2041-210X.2010.00036.x

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analogous climate. Biodivers Conserv 18:2255–2261

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediciton error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Fitzpatrick MC, Dunn RR, Sanders NJ (2008) Data sets matter, but so do evolution and ecology. Glob Ecol Biogeogr 17:562–565

    Article  Google Scholar 

  • GBIF- Global Biodiversity Information Facility (2008) Free and open access to biodiversity data. Available at: http://www.gbif.org/. Accessed 10 Nov 2008

  • Godsoe W (2010) I can't define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche. Oikos 119:53–60

    Article  Google Scholar 

  • Goin CJ (1947) Studies on the life history of Eleutherodactylus ricordii planirostris (Cope) in Florida. University of Florida Studies, Biological Sciences Series 4:1–66

    Google Scholar 

  • Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in denderobatid frogs. Evolution 58:1781–1793

    PubMed  Google Scholar 

  • Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biol Conserv 116:195–203

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1003

    Article  Google Scholar 

  • Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modeling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29:773–785

    Article  Google Scholar 

  • HerpNet (2008) Specimens searching portal. Available at: http://www.herpnet.org/. Accessed 10 Nov 2008

  • Hijmans RJ, Guarino L, Rojas E (2002) DIVA-GIS. A geographic information system for the analysis of biodiversity data. International Potato Center, Lima, Manual

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holt RD, Barfield M, Gomulkiewicz R (2005) Theories of niche conservatism and evolution: could exotic species be potential tests? In: Sax D, Stachowicz J, Gaines SD (eds) Species invasions: insight into ecology, evolution, and biogeography. Sinauer Associates, Sunderland, pp 259–290

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale Universtity Press, New Haven

    Google Scholar 

  • Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiol 26:194–220

    Article  Google Scholar 

  • Jakob SS, Heibl C, Rödder D, Blattner FR (2010) Population demography influences climatic niche evolution: evidence from diploid American Hordeum species (Poaceae). Mol Ecol 19:1423–1438

    Article  PubMed  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Jensen JB (2008) Greenhoude frog. Eleutherodactylus (Euhyas) planirostris. In: Jensen JB, Camp CD, Gibbons W, Elliott MJ (eds) Amphibians and reptiles in Geogria. University of Georgia Press, Athens, p 575

    Google Scholar 

  • Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. In: Ostfeld RS, Schlesinger WH (eds) The Year in Ecology and Conservation Biology 2008. Ann NY Acad Sci 1134:1–24

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Kearney M, Phillips BL, Tracy CR, Christian KA, Betts G, Porter WP (2008) Modelling species distributions without using species distributions: the cane toead in Australia under current and future climates. Ecography 31:423–434

    Article  Google Scholar 

  • Knouft JH, Losos JB, Glor RE, Kolbe JJ (2006) Phylogenetic analysis of the evolution of the niche in lizards of teh Anolis sagrei group. Ecology 87:S29–S38

    Article  PubMed  Google Scholar 

  • Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based envrionmental data into evolutionary biology. Trends Ecol Evol 23:141–148

    PubMed  Google Scholar 

  • Kraus F (2008) Alien reptiles and amphibians—a scientific compendium and analysis. Springer, Dordrecht

    Google Scholar 

  • Kraus F, Campbell EW (2002) Human-mediated escalation of a formerly eradicable problem: the invasion of Carribbean frogs in the Hawaiian Islands. Biol Invasions 4:327–332

    Article  Google Scholar 

  • Kraus F, Campbell EW, Allison A, Prat T (1999) Eleutherodactylus frog introductions to Hawaii. Herpetol Rev 30:21–25

    Google Scholar 

  • Lazell J (1989) Wildlife of the Florida keys: a natural history. Island Press, Washington

    Google Scholar 

  • Lever C (2003) Naturalized reptiles and amphibians of the world. Oxford University Press, Oxford

    Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lötters S, van der Meijden A, Rödder D, Koester TE, Kraus T, La Marca E, Haddad CFB, Veith M (2010) Reinforcing and expanding the predictions of the disturbance vicariance hypothesis in Amazonian harlequin frogs: a molecular phylogenetic and climate envelope modelling approach. Biodivers Conserv. doi:10.1007/s10531-010-9869-y

    Google Scholar 

  • McGarrity ME, Johnson SA (2009) Geographic trends in sexual size dimorphism and body size of Osteopilus septentrionalis (Cuban treefrog): implications for invasion of the southeastern United States. Biol Invasions 11:1411–1420

    Article  Google Scholar 

  • Nix H (1986) A biogeographic analysis of Australian elapid snakes. In: Longmore R (ed) Atlas of Elapid Snakes of Australia. Bureau of Flora and Fauna, Canberra, pp 4–15

    Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Peterson AT (2007) Ecological niche modelling and understanding the geography of disease transmission. Vet Ital 43:393–400

    PubMed  Google Scholar 

  • Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol Model 117:159–164

    Article  Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Glob Ecol Biogeogr 17:135–144

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioSci 51:363–371

    Article  Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservation of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Google Scholar 

  • Pfenninger M, Nowak C, Magnin F (2007) Intraspecific range dynamics and niche evolution in Candidula land snail species. Biol J Linn Soc 90:303–317

    Article  Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272–278

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modelling species distributions with Maxent: new extensions and comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pough HF, Stewart MM, Thomas RG (1977) Physiological basis of habitat partitioning in Jamaican Eleutherodactylus. Oecol 27:285–293

    Article  Google Scholar 

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923

    Article  PubMed  Google Scholar 

  • Rödder D (2009) Human Footprint, facilitated jump dispersal, and the potential distribution of the invasive Eleutherodactylus johnstonei Barbour, 1944 (Anura: Eleutherodactylidae). Trop Zool 22:205–217

    Google Scholar 

  • Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics within the native and invasive ranges of the Mediterranean housegecko (Hemidactylus turcicus). Glob Ecol Biogeogr 18:674–687

    Article  Google Scholar 

  • Rödder D, Lötters S (2010) Potential distribution of the alien invasive Brown tree snake, Boiga irregularis (Reptilia: Colubridae). Pac Sci 64:11–22

    Article  Google Scholar 

  • Rödder D, Schulte U (2010) Potential loss of genetic variability despite well established network of reserves: the case of the Iberian endemic lizard Lacerta schreiberi. Biodiv Conserv. doi:10.1007/s10531-010-9865-2

  • Rödder D, Weinsheimer F (2009) Will future anthropogenic climate change increase the potential distibution of the alien invasive Cuban treefrog (Anura: Hylidae)? J Nat Hist 43:1207–1217

    Article  Google Scholar 

  • Rödder D, Solé M, Böhme W (2008a) Predicting the potential distribution of two alien invasive Housegeckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus mabouia). N West J Zool 4:236–246

    Google Scholar 

  • Rödder D, Veith M, Lötters S (2008b) Environmental gradients explaining prevalence and intensity of infection with the amphibian chytrid fungus: the host’s perspective. Anim Conserv 11:513–517

    Article  Google Scholar 

  • Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TWJ, Veith M, Walker S, Fisher MC, Lötters S (2009a) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66

    Article  Google Scholar 

  • Rödder D, Schmidtlein S, Veith M, Lötters S (2009b) Alien invasive species in unpredicted habitat: a matter of niche shift or variable selection? PLoS ONE 4:e7843

    Article  PubMed  Google Scholar 

  • Rödder D, Schmidtlein S, Schick S, Lötters S (2010) Climate Envelope Models in systematics and evolutionary research: theory and practice. In: Hodkinson T, Jones M, Parnell J, Waldren S (eds) Systematics and climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O'Connor MI, Rice WR (2008) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471

    Article  Google Scholar 

  • Schelford VE (1931) Some concepts of bioecology. Ecology 13:455–467

    Article  Google Scholar 

  • Schwartz A, Henderson RW (1991) Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history. University of Florida Press, Gainesville, pp 720

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiv Inform 2:1–10

    Google Scholar 

  • Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Vanreusel W, Maes D, Van Dyck H (2007) Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies. Conserv Biol 21:201–212

    Article  PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Ann Rev Ecolog Syst 36:519–539

    Article  Google Scholar 

  • Williamson M (1996) Biological Invasions. Chapman and Hall, London

    Google Scholar 

  • Wilson LD, Porras L (1983) The ecological impact of man on the South Florida herpetofauna. Univ Kansas Mus Nat Hist Spec Publ 9:1–171

    Google Scholar 

  • Wisz MS, Hijmans RJ, Peterson AT, Graham CH, Guisan A, NPSDW Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Zippel KC, Snider AT, Gaines L, Blanchard D (2005) Eleutherodactylus planirostris. Cold tolerance. Herpetol Rev 36:299–300

    Google Scholar 

Download references

Acknowledgements

We are grateful to Thomas Weimann who helped with analyses. Dan Warren provided the Perl script mentioned above. Comments by Matthew C. Fitzpatrick helped to improve an early version of the manuscript of this paper. Our work was funded by the ‘Graduiertenförderung des Landes Nordrhein-Westfalen’ and the ‘Forschungsinitiative’ of the Ministry of Education, Science, Youth and Culture of the Rhineland-Palatinate state of Germany (‘Die Folgen des Global Change für Bioressourcen, Gesetzgebung und Standardsetzung’). Last not least, we are grateful to three anonymous referees for their valuable comments on the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Rödder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rödder, D., Lötters, S. Explanative power of variables used in species distribution modelling: an issue of general model transferability or niche shift in the invasive Greenhouse frog (Eleutherodactylus planirostris). Naturwissenschaften 97, 781–796 (2010). https://doi.org/10.1007/s00114-010-0694-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-010-0694-7

Keywords

Navigation