Skip to main content
Log in

A review on molecular topology: applying graph theory to drug discovery and design

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Molecular topology is an application of graph theory and statistics in fields like chemistry, biology, and pharmacology, in which the molecular structure matters. Its scope is the topological characterization of molecules by means of numerical invariants, called topological indices, which are the main ingredients of the molecular topological models. These are statistical models that are instrumental in the discovery of new applications of naturally occurring molecules, as well as in the design of synthetic molecules with specific chemical, biological, or pharmacological properties. In this review, we focus on pharmacology, which is a novel field of application of molecular topology. Besides summarizing some recent developments, we also seek to bring closer this interesting biomedical application of mathematics to an interdisciplinary readership.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6

Similar content being viewed by others

Notes

  1. Electronegativity explains the fact that the covalent bond between different atoms (A–B) is stronger than would be expected by taking the average of the strengths of the A–A and B–B bonds. Pauling proposed in 1932 an empirical formula for its calculation (Pauling 1960).

References

  • Amigó JM, Falcó A, Gálvez J, Villar V (2007) Topología molecular. Boletín de la Sociedad Española de Matemática Aplicada 39:137–151

    Google Scholar 

  • Arviza MP (1985) Predicción e interpretación de algunas propiedades fisicoquímicas y biológicas de un grupo de barbitúricos y sufonamidas por el método de conectividad molecular. PhD Thesis (supervised by J Gálvez) Universidad de Valencia

  • Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404

    Article  CAS  Google Scholar 

  • Balaban AT (1987) Numerical modelling of chemical structures: local graph invariants and topological indices. Stud Phys Theor Chem 51:159–176

    CAS  Google Scholar 

  • Balaban AT, Motoc I, Bonchev D, Mekenyan O (1984) Topological indices for structure–activity correlations. Top Curr Chem 114:21–71

    Article  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer Verlag, New York

    Google Scholar 

  • Bollobás B (1998) Modern graph theory. Springer Verlag, New York

    Google Scholar 

  • Bruno-Blanch L, Gálvez J, García-Domenech R (2003) Topological virtual screening: a way to find new anticonvulsant drugs from chemical diversity. Bioorg Med Chem Lett 13:2749–2754

    Article  PubMed  CAS  Google Scholar 

  • Carbó-Dorca R, Robert D, Amat L, Gironés X, Besalú E (2000) Molecular quantum similarity in QSAR and drug design. Springer Verlag, Berlin

    Google Scholar 

  • De Gregorio-Alapont C, García-Domenech R, Gálvez J, Ros MJ, Wolski S, García MD (2000) Molecular topology: a useful tool for the search of new antibacterial. Bioorg Med Chem Lett 10:2033–2036

    Article  PubMed  Google Scholar 

  • De Julián-Ortiz JV, Gálvez J, Muñoz-Collado C, García-Domenech R, Jimeno-Cardona C (1999) Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J Med Chem 42:3308–3314

    Article  PubMed  Google Scholar 

  • Devillers J, Balaban AT (eds) (2000) Topological indices and related descriptors in QSAR and QSPR. CRC, Boca Raton

    Google Scholar 

  • Duart MJ, García-Domenech R, Gálvez J, Alemán P, Martín-Algarra RV, Antón-Fos GM (2006) Application of a mathematical topological pattern of antihistaminic activity for the selection of new drug candidates and pharmacology assays. J Med Chem 49:3667–3673

    Article  PubMed  CAS  Google Scholar 

  • Furnival GM, Wilson RW (1974) Regressions by leaps and bounds. Technometrics 16:499–511

    Article  Google Scholar 

  • Gálvez J, García-Domenech R, Bernal J, García-March F (1991) Drug design based upon molecular topology: application to non-narcotic analgesics. Anales de la Real Academia de Farmacia 57:533–546

    Google Scholar 

  • Gálvez J, García R, Salabert MT, Soler R (1994a) Charge indexes - new topological descriptors. J Chem Inf Comput Sci 34:520–525

    Google Scholar 

  • Gálvez J, García-Domenech R, de Julián-Ortiz JV, Soler R (1994b) Topological approach to analgesia. J Chem Inf Comput Sci 34:1198–1203

    PubMed  Google Scholar 

  • Gálvez J, de Julián-Ortiz JV, García-Domenech R (2005) Diseño y desarrollo de nuevos fármacos contra la malaria. Enfermedades Emergentes 7:44–51

    Google Scholar 

  • García-Domenech R, de Julián-Ortiz JV (2002) Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices. J Phys Chem B 106:1501–1507

    Article  Google Scholar 

  • García-Domenech R, Villanueva A, Gálvez J, Gozalbes R (1999) Application de la topologie moléculaire a la prédiction de la viscosité liquide des composés organiques. J Chim Phys 96:1172–1185

    Article  Google Scholar 

  • García-Domenech R, de Julián-Ortiz JV, Duart MJ, García-Torrecillas JM, Antón-Fos GM, Ros-Santamarina I, de Gregorio-Alapont C, Gálvez J (2001) Search of a topological pattern to evaluate toxicity of heterogeneous compounds. SAR & QSAR Environ Res 12:237–254

    Article  Google Scholar 

  • García-Domenech R, Catalá AI, García-García A, Soriano A, Pérez-Modejar V, Gálvez J (2002) QSAR by molecular topology of 2,4-dihydroxythiobenzanilides: a virtual screening approach to optimize the antifungal activity. Indian J Chem 41B:2376–2384

    Google Scholar 

  • García-Domenech R, Muñoz-Esp R, Roda-Fenollosa G, Villanueva-Montesinos A, Gálvez J (2003) Predicción de la tensión superficial y la conductividad térmica de disolventes orgánicos mediante la topologa molecular. Afinidad 60:161–168

    Google Scholar 

  • García-Domenech R, Gálvez J, de Julián-Ortiz JV, Pogliani L (2008) Some new trends in chemical graph theory. Chem Rev 108:1127–1169

    Article  PubMed  Google Scholar 

  • Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12

    PubMed  CAS  Google Scholar 

  • Hosoya H (1971) A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull Chem Japan 44:2332–2339

    Article  CAS  Google Scholar 

  • Ivanciuc O (1998) Canonical numbering and constitutional symmetry. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) The encyclopedia of computational chemistry. John Wiley, Chichester, pp 167–183

    Google Scholar 

  • Ivanciuc O, Balaban AT (1999) The graph description of chemical structures. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science, The Netherland, pp 59–167

    Google Scholar 

  • Ivanciuc O, Balaban TS, Balaban AT (1993) Design of topological indices. Part IV: Reciprocal distance matrix, related local vertex invariants and topological indices. J Math Chem 12:309–318

    Article  CAS  Google Scholar 

  • Jasinski P, Welsh W, Gálvez J, Land D, Zwolak P, Ghandi L, Terai K, Dudek AZ (2008a) A novel quinoline, MT477: suppresses cell signalling through Ras molecular pathway, inhibits PKC activity, and demonstrates in vivo anti-tumor activity against human carcinoma cell lines. Invest New Drugs 26:223–232

    Article  PubMed  CAS  Google Scholar 

  • Jasinski P, Zwolak P, Terai K, Dudek AZ (2008b) Novel Ras pathway inhibitor induces apoptosis and growth inhibition of K-ras-mutated cancer cells in vitro and in vivo. Transl. Res. 152:203–212

    Article  PubMed  CAS  Google Scholar 

  • Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drugs research. Academic, London

    Google Scholar 

  • Kier LB, Hall LH (1986) Molecular connectivity in structure–activity analysis. Research Studies, Letchworth

    Google Scholar 

  • Klein DJ, Randić M (1993) Resistance distance. J Math Chem 12:81–95

    Article  Google Scholar 

  • Mahmoudi N, de Julián-Ortiz JV, Ciceron L, Gálvez J, Mazier D, Danis D, Derouin F, García-Domenech R (2006) Identification of new antimalarial drugs by linear discriminant analysis and topological virtual screening. J Antimicrob Chemother 57:489–497

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi N, García-Domenech R, Gálvez J, Farhati K, Franetich JF, Sauerwine R, Hannoun L, Derouin F, Danis M, Mazier D (2008) New active drugs against liver stages of plasmodium predicted by molecular topology. Antimic Agents and Chem 52:1215–1220

    Article  CAS  Google Scholar 

  • Mallows CL (1973) Some comments on Cp. Technometrics 15:661–675

    Article  Google Scholar 

  • Miller LC, Tainter ML (1944) Calculation of ED50 and LD50. Proc Soc Exp Biol Med 57:261–264

    CAS  Google Scholar 

  • Newman M, Barabási AL, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press, Princeton

    Google Scholar 

  • Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  • Randić M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615

    Article  Google Scholar 

  • Randić M (1979) Characterizations of atoms, molecules, and clases of molecules based on path enumerations. Comm Math Chem (MATCH) 7:5–64

    Google Scholar 

  • Randić M (1984) On molecular identification numbers. J Chem Inf Comput Sci 24:164–175

    Google Scholar 

  • Randić M (1990) Design of molecules with desired properties. In: Johnson MA, Maggiora GM (eds) Concepts and application of molecular similarity. John Wiley, New York, pp 77–145

    Google Scholar 

  • Randić M (1992) Similarity based on extended basis descriptors. J Chem Inf Comput Sci 32:686–692

    Google Scholar 

  • Rios-Santamarina I, García-Domenech R, Cortijo J, Santamaria P, Morcillo EJ, Gálvez J (2002) Natural compounds with bronchodilator activity selected by molecular topology. Internet Electron J Mol Design 1:70–79

    CAS  Google Scholar 

  • Trinajstić N (1992) Chemical graph theory, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Trinajstić N, Nikolić S, Lučić B, Amić D, Mihalić Z (1997) The detour matrix in chemistry. J Chem Inf Comput Sci 37:631–638

    Google Scholar 

  • Tropsha A (2006a) Predictive QSAR modeling. In: Mason J (ed) Comprehensive medicinal chemistry II, V. 4. Elsevier

  • Tropsha A (2006b) Varible selection QSAR modeling, model validation, and virtual screening. In: Martin Y (ed) Ann Rev Comp Chem. Elsevier, pp 113–126

  • Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and screening. Curr Pharm Des 13:3494–3504

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Song J, Chen J, Song Z, Shang S, Jiang Z, Han Z (2008) QSAR study of mosquitoes repellents from terpenoid with a six-member-ring. Bioorg and Med Chem Lett 18:2854–2859

    Article  CAS  Google Scholar 

  • Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  CAS  Google Scholar 

  • Witkin LB, Heubner CF, Galdi F, O’Keefe E, Spitaletta P, Plummer AJ (1961) Pharmacology of 2-amino-indane hydrochloride (Su-8629): a potent non-narcotic analgesic. J Pharmacol Exp Ther 133:400–408

    PubMed  CAS  Google Scholar 

  • Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F (2001) A fuzzy ARTMAP based on quantitative structure–property relationships (QSPRs) for predicting aqueous solubility of organic compounds. J Chem Inf Comput Sci 41:1177–1207

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to the referees for their constructive criticism. We thank very much Ramón García-Domenech (Chemistry Department, University of Valencia) for helpful discussions. Thanks are also due to Óscar Martínez Bonastre (Miguel Hernández University) for assistance with some figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Amigó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amigó, J.M., Gálvez, J. & Villar, V.M. A review on molecular topology: applying graph theory to drug discovery and design. Naturwissenschaften 96, 749–761 (2009). https://doi.org/10.1007/s00114-009-0536-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0536-7

Keywords

Navigation