Naturwissenschaften

, Volume 96, Issue 7, pp 749–761 | Cite as

A review on molecular topology: applying graph theory to drug discovery and design

  • José María Amigó
  • Jorge Gálvez
  • Vincent M. Villar
Review

Abstract

Molecular topology is an application of graph theory and statistics in fields like chemistry, biology, and pharmacology, in which the molecular structure matters. Its scope is the topological characterization of molecules by means of numerical invariants, called topological indices, which are the main ingredients of the molecular topological models. These are statistical models that are instrumental in the discovery of new applications of naturally occurring molecules, as well as in the design of synthetic molecules with specific chemical, biological, or pharmacological properties. In this review, we focus on pharmacology, which is a novel field of application of molecular topology. Besides summarizing some recent developments, we also seek to bring closer this interesting biomedical application of mathematics to an interdisciplinary readership.

Keywords

Topological indices Molecular topological models Discovery of new drugs 

References

  1. Amigó JM, Falcó A, Gálvez J, Villar V (2007) Topología molecular. Boletín de la Sociedad Española de Matemática Aplicada 39:137–151Google Scholar
  2. Arviza MP (1985) Predicción e interpretación de algunas propiedades fisicoquímicas y biológicas de un grupo de barbitúricos y sufonamidas por el método de conectividad molecular. PhD Thesis (supervised by J Gálvez) Universidad de ValenciaGoogle Scholar
  3. Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404CrossRefGoogle Scholar
  4. Balaban AT (1987) Numerical modelling of chemical structures: local graph invariants and topological indices. Stud Phys Theor Chem 51:159–176Google Scholar
  5. Balaban AT, Motoc I, Bonchev D, Mekenyan O (1984) Topological indices for structure–activity correlations. Top Curr Chem 114:21–71CrossRefGoogle Scholar
  6. Bishop CM (2006) Pattern recognition and machine learning. Springer Verlag, New YorkGoogle Scholar
  7. Bollobás B (1998) Modern graph theory. Springer Verlag, New YorkGoogle Scholar
  8. Bruno-Blanch L, Gálvez J, García-Domenech R (2003) Topological virtual screening: a way to find new anticonvulsant drugs from chemical diversity. Bioorg Med Chem Lett 13:2749–2754PubMedCrossRefGoogle Scholar
  9. Carbó-Dorca R, Robert D, Amat L, Gironés X, Besalú E (2000) Molecular quantum similarity in QSAR and drug design. Springer Verlag, BerlinGoogle Scholar
  10. De Gregorio-Alapont C, García-Domenech R, Gálvez J, Ros MJ, Wolski S, García MD (2000) Molecular topology: a useful tool for the search of new antibacterial. Bioorg Med Chem Lett 10:2033–2036PubMedCrossRefGoogle Scholar
  11. De Julián-Ortiz JV, Gálvez J, Muñoz-Collado C, García-Domenech R, Jimeno-Cardona C (1999) Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J Med Chem 42:3308–3314PubMedCrossRefGoogle Scholar
  12. Devillers J, Balaban AT (eds) (2000) Topological indices and related descriptors in QSAR and QSPR. CRC, Boca RatonGoogle Scholar
  13. Duart MJ, García-Domenech R, Gálvez J, Alemán P, Martín-Algarra RV, Antón-Fos GM (2006) Application of a mathematical topological pattern of antihistaminic activity for the selection of new drug candidates and pharmacology assays. J Med Chem 49:3667–3673PubMedCrossRefGoogle Scholar
  14. Furnival GM, Wilson RW (1974) Regressions by leaps and bounds. Technometrics 16:499–511CrossRefGoogle Scholar
  15. Gálvez J, García-Domenech R, Bernal J, García-March F (1991) Drug design based upon molecular topology: application to non-narcotic analgesics. Anales de la Real Academia de Farmacia 57:533–546Google Scholar
  16. Gálvez J, García R, Salabert MT, Soler R (1994a) Charge indexes - new topological descriptors. J Chem Inf Comput Sci 34:520–525Google Scholar
  17. Gálvez J, García-Domenech R, de Julián-Ortiz JV, Soler R (1994b) Topological approach to analgesia. J Chem Inf Comput Sci 34:1198–1203PubMedGoogle Scholar
  18. Gálvez J, de Julián-Ortiz JV, García-Domenech R (2005) Diseño y desarrollo de nuevos fármacos contra la malaria. Enfermedades Emergentes 7:44–51Google Scholar
  19. García-Domenech R, de Julián-Ortiz JV (2002) Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices. J Phys Chem B 106:1501–1507CrossRefGoogle Scholar
  20. García-Domenech R, Villanueva A, Gálvez J, Gozalbes R (1999) Application de la topologie moléculaire a la prédiction de la viscosité liquide des composés organiques. J Chim Phys 96:1172–1185CrossRefGoogle Scholar
  21. García-Domenech R, de Julián-Ortiz JV, Duart MJ, García-Torrecillas JM, Antón-Fos GM, Ros-Santamarina I, de Gregorio-Alapont C, Gálvez J (2001) Search of a topological pattern to evaluate toxicity of heterogeneous compounds. SAR & QSAR Environ Res 12:237–254CrossRefGoogle Scholar
  22. García-Domenech R, Catalá AI, García-García A, Soriano A, Pérez-Modejar V, Gálvez J (2002) QSAR by molecular topology of 2,4-dihydroxythiobenzanilides: a virtual screening approach to optimize the antifungal activity. Indian J Chem 41B:2376–2384Google Scholar
  23. García-Domenech R, Muñoz-Esp R, Roda-Fenollosa G, Villanueva-Montesinos A, Gálvez J (2003) Predicción de la tensión superficial y la conductividad térmica de disolventes orgánicos mediante la topologa molecular. Afinidad 60:161–168Google Scholar
  24. García-Domenech R, Gálvez J, de Julián-Ortiz JV, Pogliani L (2008) Some new trends in chemical graph theory. Chem Rev 108:1127–1169PubMedCrossRefGoogle Scholar
  25. Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12PubMedGoogle Scholar
  26. Hosoya H (1971) A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull Chem Japan 44:2332–2339CrossRefGoogle Scholar
  27. Ivanciuc O (1998) Canonical numbering and constitutional symmetry. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) The encyclopedia of computational chemistry. John Wiley, Chichester, pp 167–183Google Scholar
  28. Ivanciuc O, Balaban AT (1999) The graph description of chemical structures. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science, The Netherland, pp 59–167Google Scholar
  29. Ivanciuc O, Balaban TS, Balaban AT (1993) Design of topological indices. Part IV: Reciprocal distance matrix, related local vertex invariants and topological indices. J Math Chem 12:309–318CrossRefGoogle Scholar
  30. Jasinski P, Welsh W, Gálvez J, Land D, Zwolak P, Ghandi L, Terai K, Dudek AZ (2008a) A novel quinoline, MT477: suppresses cell signalling through Ras molecular pathway, inhibits PKC activity, and demonstrates in vivo anti-tumor activity against human carcinoma cell lines. Invest New Drugs 26:223–232PubMedCrossRefGoogle Scholar
  31. Jasinski P, Zwolak P, Terai K, Dudek AZ (2008b) Novel Ras pathway inhibitor induces apoptosis and growth inhibition of K-ras-mutated cancer cells in vitro and in vivo. Transl. Res. 152:203–212PubMedCrossRefGoogle Scholar
  32. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drugs research. Academic, LondonGoogle Scholar
  33. Kier LB, Hall LH (1986) Molecular connectivity in structure–activity analysis. Research Studies, LetchworthGoogle Scholar
  34. Klein DJ, Randić M (1993) Resistance distance. J Math Chem 12:81–95CrossRefGoogle Scholar
  35. Mahmoudi N, de Julián-Ortiz JV, Ciceron L, Gálvez J, Mazier D, Danis D, Derouin F, García-Domenech R (2006) Identification of new antimalarial drugs by linear discriminant analysis and topological virtual screening. J Antimicrob Chemother 57:489–497PubMedCrossRefGoogle Scholar
  36. Mahmoudi N, García-Domenech R, Gálvez J, Farhati K, Franetich JF, Sauerwine R, Hannoun L, Derouin F, Danis M, Mazier D (2008) New active drugs against liver stages of plasmodium predicted by molecular topology. Antimic Agents and Chem 52:1215–1220CrossRefGoogle Scholar
  37. Mallows CL (1973) Some comments on Cp. Technometrics 15:661–675CrossRefGoogle Scholar
  38. Miller LC, Tainter ML (1944) Calculation of ED50 and LD50. Proc Soc Exp Biol Med 57:261–264Google Scholar
  39. Newman M, Barabási AL, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press, PrincetonGoogle Scholar
  40. Pauling L (1960) The nature of the chemical bond. Cornell University Press, IthacaGoogle Scholar
  41. Randić M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615CrossRefGoogle Scholar
  42. Randić M (1979) Characterizations of atoms, molecules, and clases of molecules based on path enumerations. Comm Math Chem (MATCH) 7:5–64Google Scholar
  43. Randić M (1984) On molecular identification numbers. J Chem Inf Comput Sci 24:164–175Google Scholar
  44. Randić M (1990) Design of molecules with desired properties. In: Johnson MA, Maggiora GM (eds) Concepts and application of molecular similarity. John Wiley, New York, pp 77–145Google Scholar
  45. Randić M (1992) Similarity based on extended basis descriptors. J Chem Inf Comput Sci 32:686–692Google Scholar
  46. Rios-Santamarina I, García-Domenech R, Cortijo J, Santamaria P, Morcillo EJ, Gálvez J (2002) Natural compounds with bronchodilator activity selected by molecular topology. Internet Electron J Mol Design 1:70–79Google Scholar
  47. Trinajstić N (1992) Chemical graph theory, 2nd edn. CRC, Boca RatonGoogle Scholar
  48. Trinajstić N, Nikolić S, Lučić B, Amić D, Mihalić Z (1997) The detour matrix in chemistry. J Chem Inf Comput Sci 37:631–638Google Scholar
  49. Tropsha A (2006a) Predictive QSAR modeling. In: Mason J (ed) Comprehensive medicinal chemistry II, V. 4. ElsevierGoogle Scholar
  50. Tropsha A (2006b) Varible selection QSAR modeling, model validation, and virtual screening. In: Martin Y (ed) Ann Rev Comp Chem. Elsevier, pp 113–126Google Scholar
  51. Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and screening. Curr Pharm Des 13:3494–3504PubMedCrossRefGoogle Scholar
  52. Wang Z, Song J, Chen J, Song Z, Shang S, Jiang Z, Han Z (2008) QSAR study of mosquitoes repellents from terpenoid with a six-member-ring. Bioorg and Med Chem Lett 18:2854–2859CrossRefGoogle Scholar
  53. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20CrossRefGoogle Scholar
  54. Witkin LB, Heubner CF, Galdi F, O’Keefe E, Spitaletta P, Plummer AJ (1961) Pharmacology of 2-amino-indane hydrochloride (Su-8629): a potent non-narcotic analgesic. J Pharmacol Exp Ther 133:400–408PubMedGoogle Scholar
  55. Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F (2001) A fuzzy ARTMAP based on quantitative structure–property relationships (QSPRs) for predicting aqueous solubility of organic compounds. J Chem Inf Comput Sci 41:1177–1207PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • José María Amigó
    • 1
  • Jorge Gálvez
    • 2
  • Vincent M. Villar
    • 3
  1. 1.Operation Research CenterMiguel Hernández UniversityElcheSpain
  2. 2.Head of Molecular Connectivity and Drug Design UnitUniversity of ValenciaValenciaSpain
  3. 3.Department of Physiology, Pharmacology and ToxicologyCEU Cardenal Herrera UniversityMoncadaSpain

Personalised recommendations