Skip to main content

Advertisement

Log in

Regulation of wound healing and fibrosis by galectins

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Galectins are a family of proteins with at least one carbohydrate-recognition domain. Galectins are present in various tissues and organs and participate in different physiological and pathological molecular reactions in vivo. Wound healing is the basic process of traumatic disease recovery. Wound healing involves three overlapping stages: inflammation, proliferation, and remodelling. Furthermore, a comparison of wound healing with the tumour microenvironment revealed that galectin plays a key role in the wound healing process. The current review describes the role of galectin in inflammation, angiogenesis, re-epithelialisation, and fibrous scar formation and evaluates its potential as a therapeutic drug for wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinchmann MF, Patel DM, Iversen MH (2018) The role of galectins as modulators of metabolism and inflammation. Mediators Inflamm 2018:9186940. https://doi.org/10.1155/2018/9186940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirabayashi J, Kasai K-i (1993) The family of metazoan metal-independent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304. https://doi.org/10.1093/glycob/3.4.297

    Article  CAS  PubMed  Google Scholar 

  3. Hughes RC (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochimica et Biophysica Acta (BBA) - General Subjects 1473:172–185. https://doi.org/10.1016/S0304-4165(99)00177-4

  4. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine J-P, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B et al (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16:295–301. https://doi.org/10.1038/nm.2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine J-P, Noll AJ, von Gunten S et al (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10:470–476. https://doi.org/10.1038/nchembio.1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raz A, Lotan R (1987) Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev 6:433–452

  7. Sundblad V, Mathieu V, Kiss R, Rabinovich GA (2013) Chapter 31—galectins: key players in the tumor microenvironment. In: Prendergast GC, Jaffee EM (eds) Cancer Immunotherapy, 2nd edn. Academic Press, San Diego, pp 537–563

    Chapter  Google Scholar 

  8. Yang R-Y, Rabinovich GA, Liu F-T (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17. https://doi.org/10.1017/S1462399408000719

    Article  PubMed  Google Scholar 

  9. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2002) Introduction to galectins. Glycoconj J 19:433–440. https://doi.org/10.1023/B:GLYC.0000014072.34840.04

    Article  CAS  PubMed  Google Scholar 

  10. McLeod K, Walker JT, Hamilton DW (2018) Galectin-3 regulation of wound healing and fibrotic processes: insights for chronic skin wound therapeutics. J Cell Commun Signal 12:281–287. https://doi.org/10.1007/s12079-018-0453-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dvořánková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Sykova E et al (2011) Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs 194:469–480. https://doi.org/10.1159/000324864

    Article  CAS  PubMed  Google Scholar 

  12. Panjwani N (2014) Role of galectins in re-epithelialization of wounds. Ann Transl Med 2:89–89. https://doi.org/10.3978/j.issn.2305-5839.2014.09.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rhodes DH, Pini M, Castellanos KJ, Montero-Melendez T, Cooper D, Perretti M, Fantuzzi G (2013) Adipose tissue-specific modulation of galectin expression in lean and obese mice: evidence for regulatory function. Obesity (Silver Spring) 21:310–319. https://doi.org/10.1002/oby.20016

    Article  CAS  Google Scholar 

  14. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378:736–739. https://doi.org/10.1038/378736a0

    Article  CAS  PubMed  Google Scholar 

  15. Than NG, Erez O, Wildman DE, Tarca AL, Edwin SS, Abbas A, Hotra J, Kusanovic JP, Gotsch F, Hassan SS et al (2008) Severe preeclampsia is characterized by increased placental expression of galectin-1. J Matern Fetal Neona 21:429–442. https://doi.org/10.1080/14767050802041961

    Article  CAS  Google Scholar 

  16. Auvynet C, Moreno S, Melchy E, Coronado-Martínez I, Montiel JL, Aguilar-Delfin I, Rosenstein Y (2013) Galectin-1 promotes human neutrophil migration. Glycobiology 23:32–42. https://doi.org/10.1093/glycob/cws128

    Article  CAS  PubMed  Google Scholar 

  17. Ito K, Stannard K, Gabutero E, Clark AM, Neo S-Y, Onturk S, Blanchard H, Ralph SJ (2012) Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev 31:763–778. https://doi.org/10.1007/s10555-012-9388-2

    Article  CAS  PubMed  Google Scholar 

  18. Lei T, Moos S, Klug J, Aslani F, Bhushan S, Wahle E, Fröhlich S, Meinhardt A, Fijak M (2018) Galectin-1 enhances TNFα-induced inflammatory responses in Sertoli cells through activation of MAPK signalling. Sci Rep 8:3741–3741. https://doi.org/10.1038/s41598-018-22135-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim MH, Wu WH, Choi JH, Kim J, Jun JH, Ko Y, Lee JH (2018) Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair and Regeneration 26:S9–S18. https://doi.org/10.1111/wrr.12579

    Article  PubMed  Google Scholar 

  20. Lin Y-T, Chen J-S, Wu M-H, Hsieh IS, Liang C-H, Hsu C-L, Hong T-M, Chen Y-L (2015) Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J Investig Dermatol 135:258–268. https://doi.org/10.1038/jid.2014.288

    Article  PubMed  Google Scholar 

  21. D’Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C, Baum L, Salmon I (2013) VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS ONE 8:e67029–e67029. https://doi.org/10.1371/journal.pone.0067029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paclik D, Danese S, Berndt U, Wiedenmann B, Dignass A, Sturm A (2008) Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle. PLoS ONE 3:e2629–e2629. https://doi.org/10.1371/journal.pone.0002629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yıldırım C, Vogel DYS, Hollander MR, Baggen JM, Fontijn RD, Nieuwenhuis S, Haverkamp A, de Vries MR, Quax PHA, Garcia-Vallejo JJ et al (2015) Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages. PLoS ONE 10:e0124347–e0124347. https://doi.org/10.1371/journal.pone.0124347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, Chen C, Rhodes JM, Yu L-G (2011) Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res 17:7035. https://doi.org/10.1158/1078-0432.CCR-11-1462

    Article  CAS  PubMed  Google Scholar 

  25. Gendronneau G, Sidhu SS, Delacour D, Dang T, Calonne C, Houzelstein D, Magnaldo T, Poirier F (2008) Galectin-7 in the control of epidermal homeostasis after injury. Mol Biol Cell 19:5541–5549. https://doi.org/10.1091/mbc.e08-02-0166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gendronneau G, Sanii S, Dang T, Deshayes F, Delacour D, Pichard E, Advedissian T, Sidhu SS, Viguier M, Magnaldo T et al (2015) Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS ONE 10:e0119031–e0119031. https://doi.org/10.1371/journal.pone.0119031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen H-L, Lo C-H, Huang C-C, Lu M-P, Hu P-Y, Chen C-S, Chueh D-Y, Chen P, Lin T-N, Lo Y-H et al (2021) Galectin-7 downregulation in lesional keratinocytes contributes to enhanced IL-17A signaling and skin pathology in psoriasis. J Clin Invest 131:e130740. https://doi.org/10.1172/JCI130740

    Article  CAS  PubMed Central  Google Scholar 

  28. Cao Z, Said N, Wu HK, Kuwabara I, Liu F-T, Panjwani N (2003) Galectin-7 as a potential mediator of corneal epithelial cell migration. Arch Ophthalmol 121:82–86. https://doi.org/10.1001/archopht.121.1.82

    Article  CAS  PubMed  Google Scholar 

  29. Kaur M, Kaur T, Kamboj SS, Singh J (2016) Roles of galectin-7 in cancer. Asian Pac J Cancer Prev 17(2):455–461. http://dx.doi.org/10.7314/apjcp.2016.17.2.455

  30. Su J (2018) A brief history of Charcot-Leyden crystal protein/galectin-10 research. Molecules 23:2931. https://doi.org/10.3390/molecules23112931

    Article  CAS  PubMed Central  Google Scholar 

  31. Than NG, Balogh A, Romero R, Kárpáti E, Erez O, Szilágyi A, Kovalszky I, Sammar M, Gizurarson S, Matkó J et al (2014) Placental protein 13 (PP13)—a placental immunoregulatory galectin protecting pregnancy. Front Immunol 5:348–348. https://doi.org/10.3389/fimmu.2014.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Si Y, Li Y, Yang T, Li X, Ayala GJ, Mayo KH, Tai G, Su J, Zhou Y (2021) Structure–function studies of galectin-14, an important effector molecule in embryology. FEBS J 288:1041–1055. https://doi.org/10.1111/febs.15441

    Article  CAS  PubMed  Google Scholar 

  33. Hokama A, Mizoguchi E, Sugimoto K, Shimomura Y, Tanaka Y, Yoshida M, Rietdijk ST, de Jong YP, Snapper SB, Terhorst C et al (2004) Induced reactivity of intestinal CD4+ T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 20:681–693. https://doi.org/10.1016/j.immuni.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Wang G, Huang X, Dong X, Chen G, Lin M, Cai Z, Zeng Y (2017) Overexpression of galectin-4 promotes cell growth of hepatocellular carcinoma cells in vitro and in vivo. Int J Clin Exp Pathol 10:10233–10242

    PubMed  PubMed Central  Google Scholar 

  35. Hadari YR, Paz K, Dekel R, Mestrovic T, Accili D, Zick Y (1995) Galectin-8: a new rat lectin, related to galectin-4 (∗). J Biol Chem 270:3447–3453. https://doi.org/10.1074/jbc.270.7.3447

    Article  CAS  PubMed  Google Scholar 

  36. Bidon N, Brichory F, Bourguet P, Le Pennec J-P, Dazord L (2001) Galectin-8: a complex sub-family of galectins (review). Int J Mol Med 8:245–250. https://doi.org/10.3892/ijmm.8.3.245

    Article  CAS  PubMed  Google Scholar 

  37. Troncoso MF, Ferragut F, Bacigalupo ML, Cárdenas Delgado VM, Nugnes LG, Gentilini L, Laderach D, Wolfenstein-Todel C, Compagno D, Rabinovich GA et al (2014) Galectin-8: a matricellular lectin with key roles in angiogenesis. Glycobiology 24:907–914. https://doi.org/10.1093/glycob/cwu054

    Article  CAS  PubMed  Google Scholar 

  38. Smith PC, Metz C, de la Peña A, Oyanadel C, Avila P, Arancibia R, Vicuña L, Retamal C, Barake F, González A et al (2020) Galectin-8 mediates fibrogenesis induced by cyclosporine in human gingival fibroblasts. J Periodontal Res 55:724–733. https://doi.org/10.1111/jre.12761

    Article  CAS  PubMed  Google Scholar 

  39. Meinohl C, Barnard SJ, Fritz-Wolf K, Unger M, Porr A, Heipel M, Wirth S, Madlung J, Nordheim A, Menke A et al (2020) Galectin-8 binds to the farnesylated C-terminus of K-Ras4B and modifies Ras/ERK signaling and migration in pancreatic and lung carcinoma cells. Cancers 12. https://doi.org/10.3390/cancers12010030

  40. Wada J, Kanwar YS (1997) Identification and characterization of galectin-9, a novel β-galactoside-binding mammalian lectin*. J Biol Chem 272:6078–6086. https://doi.org/10.1074/jbc.272.9.6078

    Article  CAS  PubMed  Google Scholar 

  41. Zhang W, Zhang Y, He Y, Wang X, Fang Q (2019) Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the tim-3/galectin-9 signalling pathway. Exp Cell Res 376:124–132. https://doi.org/10.1016/j.yexcr.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  42. Thijssen VL, Griffioen AW (2014) Galectin-1 and -9 in angiogenesis: a sweet couple. Glycobiology 24:915–920. https://doi.org/10.1093/glycob/cwu048

    Article  CAS  PubMed  Google Scholar 

  43. Shintaro F, Hirohito M, Hideki K, Kazi R, Toshiro N, Mitsuomi H, Tsutomu M (2013) Galectin-9 in cancer therapy. Recent Pat Endocr, Metab Immune Drug Discovery 7:130–137. https://doi.org/10.2174/1872214811307020006

    Article  Google Scholar 

  44. Fujita K, Iwama H, Oura K, Tadokoro T, Samukawa E, Sakamoto T, Nomura T, Tani J, Yoneyama H, Morishita A et al (2017) Cancer therapy due to apoptosis: galectin-9. Int J Mol Sci 18:74. https://doi.org/10.3390/ijms18010074

    Article  CAS  PubMed Central  Google Scholar 

  45. Hotta K, Funahashi T, Matsukawa Y, Takahashi M, Nishizawa H, Kishida K, Matsuda M, Kuriyama H, Kihara S, Nakamura T et al (2001) Galectin-12, an adipose-expressed galectin-like molecule possessing apoptosis-inducing activity*. J Biol Chem 276:34089–34097. https://doi.org/10.1074/jbc.M105097200

    Article  CAS  PubMed  Google Scholar 

  46. Wan L, Lin H-J, Huang C-C, Chen Y-C, Hsu Y-A, Lin C-H, Lin H-C, Chang C-Y, Huang S-H, Lin J-M et al (2016) Galectin-12 enhances inflammation by promoting M1 polarization of macrophages and reduces insulin sensitivity in adipocytes. Glycobiology 26:732–744. https://doi.org/10.1093/glycob/cww013

    Article  CAS  PubMed  Google Scholar 

  47. Wan L, Yang R-Y, Liu F-T (2018) Galectin-12 in cellular differentiation, apoptosis and polarization. Int J Mol Sci 19:176. https://doi.org/10.3390/ijms19010176

    Article  CAS  PubMed Central  Google Scholar 

  48. Ho MK, Springer TA (1982) Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol 128:1221

    CAS  PubMed  Google Scholar 

  49. Song L, Tang J-w, Owusu L, Sun M-Z, Wu J, Zhang J (2014) Galectin-3 in cancer. Clin Chim Acta 431:185–191. https://doi.org/10.1016/j.cca.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  50. Cao Z, Said N, Amin S, Wu HK, Bruce A, Garate M, Hsu DK, Kuwabara I, Liu F-T, Panjwani N (2002) Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds*. J Biol Chem 277:42299–42305. https://doi.org/10.1074/jbc.M200981200

    Article  CAS  PubMed  Google Scholar 

  51. Saravanan C, Liu F-T, Gipson IK, Panjwani N (2009) Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci 122:3684–3693. https://doi.org/10.1242/jcs.045674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu W, Hsu DK, Chen H-Y, Yang R-Y, Carraway KL 3rd, Isseroff RR, Liu F-T (2012) Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Invest Dermatol 132:2828–2837. https://doi.org/10.1038/jid.2012.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santucci L, Fiorucci S, Cammilleri F, Servillo G, Federici B, Morelli A (2000) Galectin-1 exerts immunomodulatory and protective effects on concanavalin a–induced hepatitis in mice. Hepatology 31:399–406. https://doi.org/10.1002/hep.510310220

    Article  CAS  PubMed  Google Scholar 

  54. Rabinovich GA, Daly G, Dreja H, Tailor H, Riera CM, Hirabayashi J, Chernajovsky Y (1999) Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 190:385–398. https://doi.org/10.1084/jem.190.3.385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, Federici B, Rabinovich GA, Morelli A (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124:1381–1394. https://doi.org/10.1016/S0016-5085(03)00267-1

    Article  CAS  PubMed  Google Scholar 

  56. Ozaki K, Inoue K, Sato H, Iida A, Ohnishi Y, Sekine A, Sato H, Odashiro K, Nobuyoshi M, Hori M et al (2004) Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-α secretion in vitro. Nature 429:72–75. https://doi.org/10.1038/nature02502

    Article  CAS  PubMed  Google Scholar 

  57. Cecilia L (2010) Antibody-based proteomics for discovery and exploration of proteins expressed in pancreatic islets. Discov Med 9:565–578

    Google Scholar 

  58. Hong S-H, Shin J-S, Chung H, Park C-G (2019) Galectin-4 interaction with CD14 triggers the differentiation of monocytes into macrophage-like cells via the MAPK signaling pathway. Immune Netw 19:e17–e17. https://doi.org/10.4110/in.2019.19.e17

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fukumori T, Takenaka Y, Yoshii T, Kim H-RC, Hogan V, Inohara H, Kagawa S, Raz A (2003) CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Can Res 63:8302

    CAS  Google Scholar 

  60. Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim H-RC, Raz A (2002) Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest*. J Biol Chem 277:6852–6857. https://doi.org/10.1074/jbc.M107668200

    Article  CAS  PubMed  Google Scholar 

  61. Yamaoka A, Kuwabara I, Frigeri LG, Liu FT (1995) A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol 154:3479

    CAS  PubMed  Google Scholar 

  62. Kuwabara I, Liu FT (1996) Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 156:3939

    CAS  PubMed  Google Scholar 

  63. Bhaumik P, St-Pierre G, Milot V, St-Pierre C, Sato S (2013) Galectin-3 facilitates neutrophil recruitment as an innate immune response to a parasitic protozoa cutaneous infection. J Immunol 190:630. https://doi.org/10.4049/jimmunol.1103197

    Article  CAS  PubMed  Google Scholar 

  64. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu F-T (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165:2156. https://doi.org/10.4049/jimmunol.165.4.2156

    Article  CAS  PubMed  Google Scholar 

  65. Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol 178:19–25. https://doi.org/10.1016/j.ajpath.2010.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karlsson A, Christenson K, Matlak M, Björstad Å, Brown KL, Telemo E, Salomonsson E, Leffler H, Bylund J (2009) Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 19:16–20. https://doi.org/10.1093/glycob/cwn104

    Article  CAS  PubMed  Google Scholar 

  67. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650. https://doi.org/10.4049/jimmunol.180.4.2650

    Article  CAS  PubMed  Google Scholar 

  68. Walker JT, Elliott CG, Forbes TL, Hamilton DW (2016) Genetic deletion of galectin-3 does not impair full-thickness excisional skin healing. J Investig Dermatol 136:1042–1050. https://doi.org/10.1016/j.jid.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  69. Cattaneo V, Tribulatti MV, Carabelli J, Carestia A, Schattner M, Campetella O (2014) Galectin-8 elicits pro-inflammatory activities in the endothelium. Glycobiology 24:966–973. https://doi.org/10.1093/glycob/cwu060

    Article  CAS  PubMed  Google Scholar 

  70. Romaniuk Maria A, Tribulatti Maria V, Cattaneo V, Lapponi Maria J, Molinas Felisa C, Campetella O, Schattner M (2010) Human platelets express and are activated by galectin-8. Biochemical Journal 432:535–547. https://doi.org/10.1042/BJ20100538

    Article  CAS  PubMed  Google Scholar 

  71. Carabelli J, Quattrocchi V, D’Antuono A, Zamorano P, Tribulatti MV, Campetella O (2017) Galectin-8 activates dendritic cells and stimulates antigen-specific immune response elicitation. J Leukoc Biol 102:1237–1247. https://doi.org/10.1189/jlb.3A0816-357RR

    Article  CAS  PubMed  Google Scholar 

  72. Nishi N, Shoji H, Seki M, Itoh A, Miyanaka H, Yuube K, Hirashima M, Nakamura T (2003) Galectin-8 modulates neutrophil function via interaction with integrin αM. Glycobiology 13:755–763. https://doi.org/10.1093/glycob/cwg102

    Article  CAS  PubMed  Google Scholar 

  73. Choi E, Miller AD, Devenish E, Asakawa M, McConkey M, Peters-Kennedy J (2017) Charcot-Leyden crystals: do they exist in veterinary species? A case report and literature review. J Vet Diagn Invest 29:904–909. https://doi.org/10.1177/1040638717725783

    Article  PubMed  Google Scholar 

  74. Dvorak AM, Letourneau L, Login GR, Weller PF, Ackerman SJ (1988) Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to a distinct crystalloid-free granule population in mature human eosinophils. Blood 72:150–158. https://doi.org/10.1182/blood.V72.1.150.150

    Article  CAS  PubMed  Google Scholar 

  75. Rodríguez-Alcázar JF, Ataide MA, Engels G, Schmitt-Mabmunyo C, Garbi N, Kastenmüller W, Latz E, Franklin BS (2019) Charcot-Leyden crystals activate the NLRP3 inflammasome and cause IL-1β inflammation in human macrophages. J Immunol 202:550. https://doi.org/10.4049/jimmunol.1800107

    Article  CAS  PubMed  Google Scholar 

  76. Pang J, Rhodes DH, Pini M, Akasheh RT, Castellanos KJ, Cabay RJ, Cooper D, Perretti M, Fantuzzi G (2013) Increased adiposity, dysregulated glucose metabolism and systemic inflammation in galectin-3 KO mice. PLoS ONE 8:e57915–e57915. https://doi.org/10.1371/journal.pone.0057915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thijssen VLJL, Postel R, Brandwijk RJMGE, Dings RPM, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J et al (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A 103:15975–15980. https://doi.org/10.1073/pnas.0603883103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ, Ouyang J, Ilarregui JM, Toscano MA, Domaica CI et al (2012) Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 209:1985–2000. https://doi.org/10.1084/jem.20111665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156:899–909. https://doi.org/10.1016/S0002-9440(10)64959-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Delgado VMC, Nugnes LG, Colombo LL, Troncoso MF, Fernández MM, Malchiodi EL, Frahm I, Croci DO, Compagno D, Rabinovich GA et al (2011) Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. FASEB J 25:242–254. https://doi.org/10.1096/fj.09-144907

    Article  CAS  PubMed  Google Scholar 

  81. Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY, Jin YT, Hong TM, Chen YL (2008) Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27:3746–3753. https://doi.org/10.1038/sj.onc.1211029

    Article  CAS  PubMed  Google Scholar 

  82. Croci DO, Cerliani JP, Dalotto-Moreno T, Mendez-Huergo SP, Mascanfroni ID, Dergan-Dylon S, Toscano MA, Caramelo JJ, Garcia-Vallejo JJ, Ouyang J et al (2014) Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156:744–758. https://doi.org/10.1016/j.cell.2014.01.043

    Article  CAS  PubMed  Google Scholar 

  83. Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, Hackeng TM, Kiss R, Kloog Y, Poirier F et al (2010) Tumor cells secrete galectin-1 to enhance endothelial cell activity. Can Res 70:6216. https://doi.org/10.1158/0008-5472.CAN-09-4150

    Article  CAS  Google Scholar 

  84. Wei J, Li DK, Hu X, Cheng C, Zhang Y (2021) Galectin-1–RNA interaction map reveals potential regulatory roles in angiogenesis. FEBS Lett 595:623–636. https://doi.org/10.1002/1873-3468.14047

    Article  CAS  PubMed  Google Scholar 

  85. Wu M-H, Ying N-W, Hong T-M, Chiang W-F, Lin Y-T, Chen Y-L (2014) Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis 17:839–849. https://doi.org/10.1007/s10456-014-9431-8

    Article  CAS  PubMed  Google Scholar 

  86. Wu D, Kanda A, Liu Y, Kase S, Noda K, Ishida S (2019) Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelialmesenchymal transition. FASEB J 33:2498–2513. https://doi.org/10.1096/fj.201801227R

    Article  CAS  PubMed  Google Scholar 

  87. Markowska AI, Liu F-T, Panjwani N (2010) Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 207:1981–1993. https://doi.org/10.1084/jem.20090121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tan C, Cruet-Hennequart S, Troussard A, Fazli L, Costello P, Sutton K, Wheeler J, Gleave M, Sanghera J, Dedhar S (2004) Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell 5:79–90. https://doi.org/10.1016/S1535-6108(03)00281-2

    Article  CAS  PubMed  Google Scholar 

  89. Markowska AI, Jefferies KC, Panjwani N (2011) Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 286:29913–29921. https://doi.org/10.1074/jbc.M111.226423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Johannes P, Harald FL (2012) Platelets in angiogenesis. Curr Vasc Pharmacol 10:570–577. https://doi.org/10.2174/157016112801784648

    Article  Google Scholar 

  91. Etulain J, Fondevila C, Negrotto S, Schattner M (2013) Platelet-mediated angiogenesis is independent of VEGF and fully inhibited by aspirin. Br J Pharmacol 170:255–265. https://doi.org/10.1111/bph.12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Etulain J, Negrotto S, Tribulatti MV, Croci DO, Carabelli J, Campetella O, Rabinovich GA, Schattner M (2014) Control of angiogenesis by galectins involves the release of platelet-derived proangiogenic factors. PLoS ONE 9:e96402–e96402. https://doi.org/10.1371/journal.pone.0096402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Spitzenberger F, Graessler J, Schroeder H-E (2001) Molecular and functional characterization of galectin 9 mRNA isoforms in porcine and human cells and tissues***. The nucleotide sequences reported in this paper have been submitted to the GenBankTM / EBI Data Bank with accession number(s) AJ131826 (Sus scrofa mRNA for urate transporter/channel protein) and AJ131827 (Sus scrofa mRNA for urate transporter/channel isoform). Biochimie 83:851–862. https://doi.org/10.1016/S0300-9084(01)01335-9

    Article  CAS  PubMed  Google Scholar 

  94. Imaizumi T, Kumagai M, Sasaki N, Kurotaki H, Mori F, Seki M, Nishi N, Fujimoto K, Tanji K, Shibata T et al (2002) Interferon-γ stimulates the expression of galectin-9 in cultured human endothelial cells. J Leukoc Biol 72:486–491. https://doi.org/10.1189/jlb.72.3.486

    Article  CAS  PubMed  Google Scholar 

  95. Asakura H, Kashio Y, Nakamura K, Seki M, Dai S, Shirato Y, Abedin MJ, Yoshida N, Nishi N, Imaizumi T et al (2002) Selective eosinophil adhesion to fibroblast via IFN-γ-induced galectin-9. J Immunol 169:5912. https://doi.org/10.4049/jimmunol.169.10.5912

    Article  CAS  PubMed  Google Scholar 

  96. Fujii A, Shearer TR, Azuma M (2015) Galectin-3 enhances extracellular matrix associations and wound healing in monkey corneal epithelium. Exp Eye Res 137:71–78. https://doi.org/10.1016/j.exer.2015.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tracy LE, Minasian RA, Caterson EJ (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5:119–136. https://doi.org/10.1089/wound.2014.0561

    Article  Google Scholar 

  98. Gál P, Varinská L, Fáber L, Novák Š, Szabo P, Mitrengová P, Mirossay A, Mučaji P, Smetana K (2017) How signaling molecules regulate tumor microenvironment: parallels to wound repair. Molecules 22:1818. https://doi.org/10.3390/molecules22111818

    Article  CAS  PubMed Central  Google Scholar 

  99. Zhang M, Zhang S (2020) T cells in fibrosis and fibrotic diseases. Front Immunol 11:1142–1142. https://doi.org/10.3389/fimmu.2020.01142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu M-H, Chen Y-L, Lee K-H, Chang C-C, Cheng T-M, Wu S-Y, Tu C-C, Tsui W-L (2017) Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci Rep 7:11006–11006. https://doi.org/10.1038/s41598-017-11212-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, Tian Z, Allen-Gipson D, Davé V (2017) Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov 3:17010–17010. https://doi.org/10.1038/cddiscovery.2017.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tang D, Wu Q, Zhang J, Zhang H, Yuan Z, Xu J, Chong Y, Huang Y, Xiong Q, Wang S et al (2018) Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncol Rep 39:1347–1355. https://doi.org/10.3892/or.2018.6202

    Article  CAS  PubMed  Google Scholar 

  103. González GE, Cassaglia P, Noli Truant S, Fernández MM, Wilensky L, Volberg V, Malchiodi EL, Morales C, Gelpi RJ (2014) Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol 176:1423–1425. https://doi.org/10.1016/j.ijcard.2014.08.011

    Article  PubMed  Google Scholar 

  104. Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, Simpson AJ, Forbes SJ, Hirani N, Gauldie J et al (2012) Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185:537–546. https://doi.org/10.1164/rccm.201106-0965OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen S-C, Kuo P-L (2016) The role of galectin-3 in the kidneys. Int J Mol Sci 17:565–565. https://doi.org/10.3390/ijms17040565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiang JX, Chen X, Hsu DK, Baghy K, Serizawa N, Scott F, Takada Y, Takada Y, Fukada H, Chen J et al (2012) Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am J Physiol Gastrointest Liver Physiol 302:G439–G446. https://doi.org/10.1152/ajpgi.00257.2011

    Article  CAS  PubMed  Google Scholar 

  107. Seki E, Brenner DA (2015) Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci 22:512–518. https://doi.org/10.1002/jhbp.245

    Article  PubMed  PubMed Central  Google Scholar 

  108. Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology (Baltimore, MD) 61:1066–1079. https://doi.org/10.1002/hep.27332

    Article  Google Scholar 

  109. Mak KM, Mei R (2017) Basement membrane type IV collagen and laminin: an overview of their biology and value as fibrosis biomarkers of liver disease. Anat Rec 300:1371–1390. https://doi.org/10.1002/ar.23567

    Article  CAS  Google Scholar 

  110. Wu L, Luo Z, Zheng J, Yao P, Yuan Z, Lv X, Zhao J, Wang M (2018) IL-33 can promote the process of pulmonary fibrosis by inducing the imbalance between MMP-9 and TIMP-1. Inflammation 41:878–885. https://doi.org/10.1007/s10753-018-0742-6

    Article  CAS  PubMed  Google Scholar 

  111. Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200:448–464. https://doi.org/10.1002/path.1400

    Article  CAS  PubMed  Google Scholar 

  112. Maeda N, Kawada N, Seki S, Arakawa T, Ikeda K, Iwao H, Okuyama H, Hirabayashi J, Kasai K-i, Yoshizato K (2003) Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways*. J Biol Chem 278:18938–18944. https://doi.org/10.1074/jbc.M209673200

    Article  CAS  PubMed  Google Scholar 

  113. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17:113–125. https://doi.org/10.2119/molmed.2009.00153

    Article  CAS  PubMed  Google Scholar 

  114. Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G (2009) TGF-β and fibrosis in different organs — molecular pathway imprints. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1792:746–756. https://doi.org/10.1016/j.bbadis.2009.06.004

  115. Kirkpatrick LD, Shupp JW, Smith RD, Alkhalil A, Moffatt LT, Carney BC (2021) Galectin-1 production is elevated in hypertrophic scar. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society 29:117–128. https://doi.org/10.1111/wrr.12869

  116. Ong CT, Khoo YT, Mukhopadhyay A, Masilamani J, Do DV, Lim IJ, Phan TT (2010) Comparative proteomic analysis between normal skin and keloid scar. Br J Dermatol 162:1302–1315. https://doi.org/10.1111/j.1365-2133.2010.09660.x

    Article  CAS  PubMed  Google Scholar 

  117. Yanaba K, Asano Y, Akamata K, Noda S, Aozasa N, Taniguchi T, Takahashi T, Toyama T, Ichimura Y, Sumida H et al (2016) Circulating galectin-1 concentrations in systemic sclerosis: potential contribution to digital vasculopathy. Int J Rheum Dis 19:622–627. https://doi.org/10.1111/1756-185X.12288

    Article  CAS  PubMed  Google Scholar 

  118. Gál P, Vasilenko T, Kostelníková M, Jakubco J, Kovác I, Sabol F, André S, Kaltner H, Gabius H-J, Smetana K Jr (2011) Open wound healing in vivo: monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochem Cytochem 44:191–199. https://doi.org/10.1267/ahc.11014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ho S, Marçal H, Foster LJR (2014) Towards scarless wound healing: a comparison of protein expression between human, adult and foetal fibroblasts. Biomed Res Int 2014:676493–676493. https://doi.org/10.1155/2014/676493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R-157R. https://doi.org/10.1093/glycob/cwl025

    Article  CAS  PubMed  Google Scholar 

  121. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, Haslett C, Simpson KJ, Sethi T (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 103:5060–5065. https://doi.org/10.1073/pnas.0511167103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Luo H, Liu B, Zhao L, He J, Li T, Zha L, Li X, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc Hypertens 11:673-683.e673. https://doi.org/10.1016/j.jash.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  123. Mazurek JA, Horne BD, Saeed W, Sardar MR, Zolty R (2017) Galectin-3 levels are elevated and predictive of mortality in pulmonary hypertension. Heart Lung Circ 26:1208–1215. https://doi.org/10.1016/j.hlc.2016.12.012

    Article  PubMed  Google Scholar 

  124. He J, Li X, Luo H, Li T, Zhao L, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates the pulmonary arterial hypertension–induced right ventricular remodeling through interacting with NADPH oxidase 4. J Am Soc Hypertens 11:275-289.e272. https://doi.org/10.1016/j.jash.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  125. Tang H, Zhang P, Zeng L, Zhao Y, Xie L, Chen B (2021) Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat. Stem Cell Res Ther 12:409–409. https://doi.org/10.1186/s13287-021-02429-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Akimoto Y, Ikehara S, Yamaguchi T, Kim J, Kawakami H, Shimizu N, Hori M, Sakakita H, Ikehara Y (2016) Galectin expression in healing wounded skin treated with low-temperature plasma: comparison with treatment by electronical coagulation. Arch Biochem Biophys 605:86–94. https://doi.org/10.1016/j.abb.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  127. Manzi M, Bacigalupo ML, Carabias P, Elola MT, Wolfenstein-Todel C, Rabinovich GA, Espelt MV, Troncoso MF (2016) Galectin-1 controls the proliferation and migration of liver sinusoidal endothelial cells and their interaction with hepatocarcinoma cells. J Cell Physiol 231:1522–1533. https://doi.org/10.1002/jcp.25244

    Article  CAS  PubMed  Google Scholar 

  128. van Beijnum JR, Thijssen VL, Läppchen T, Wong TJ, Verel I, Engbersen M, Schulkens IA, Rossin R, Grüll H, Griffioen AW et al (2016) A key role for galectin-1 in sprouting angiogenesis revealed by novel rationally designed antibodies. Int J Cancer 139:824–835. https://doi.org/10.1002/ijc.30131

    Article  CAS  PubMed  Google Scholar 

  129. PerŽEĽOvÁ V, VarinskÁ L, DvoŘÁNkovÁ B, Szabo P, SpurnÝ P, Valach J, MojŽIŠ J, AndrÉ S, Gabius H-J, Smetana K et al (2014) Extracellular matrix of galectin-1-exposed dermal and tumor-associated fibroblasts favors growth of human umbilical vein endothelial cells in vitro: a short report. Anticancer Res 34:3991

    PubMed  Google Scholar 

  130. Salajegheh A, Dolan-Evans E, Sullivan E, Irani S, Rahman MA, Vosgha H, Gopalan V, Smith RA, Lam AK-Y (2014) The expression profiles of the galectin gene family in primary and metastatic papillary thyroid carcinoma with particular emphasis on galectin-1 and galectin-3 expression. Exp Mol Pathol 96:212–218. https://doi.org/10.1016/j.yexmp.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  131. Freichel T, Heine V, Laaf D, Mackintosh EE, Sarafova S, Elling L, Snyder NL, Hartmann L (2020) Sequence-defined heteromultivalent precision glycomacromolecules bearing sulfonated/sulfated nonglycosidic moieties preferentially bind galectin-3 and delay wound healing of a galectin-3 positive tumor cell line in an in vitro wound scratch assay. Macromol Biosci 20:2000163. https://doi.org/10.1002/mabi.202000163

    Article  CAS  Google Scholar 

  132. Chen C, Duckworth CA, Fu B, Pritchard DM, Rhodes JM, Yu LG (2014) Circulating galectins -2, -4 and -8 in cancer patients make important contributions to the increased circulation of several cytokines and chemokines that promote angiogenesis and metastasis. Br J Cancer 110:741–752. https://doi.org/10.1038/bjc.2013.793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cai Z, Zeng Y, Xu B, Gao Y, Wang S, Zeng J, Chen L, Huang A, Liu X, Liu J (2014) Galectin-4 serves as a prognostic biomarker for the early recurrence/metastasis of hepatocellular carcinoma. Cancer Sci 105:1510–1517. https://doi.org/10.1111/cas.12536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the administrative support of The Affiliated Hospital of Yangzhou University. We would like to thank the native English-speaking scientists of Editeg Company (Shanghai, China) for editing our manuscript.

Funding

This work was supported in part by the National Natural Science Foundation of China (No. 81802792).

Author information

Authors and Affiliations

Authors

Contributions

D.Y., M.B., P.Y., and Y.C. conceived and designed the study. D.Y. and Y.C. drafted the manuscript. D.Y., Y.P.L., and. Y.C. drew the table and figures. All the authors were involved in revising the paper critically and gave final approval of the version to be submitted. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang Chong.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Bu, M., Yu, P. et al. Regulation of wound healing and fibrosis by galectins. J Mol Med 100, 861–874 (2022). https://doi.org/10.1007/s00109-022-02207-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02207-1

Keywords

Navigation