Skip to main content
Log in

Histone deacetylase 3 (HDAC3) as an important epigenetic regulator of kidney diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Development and progression of many kidney diseases are substantially influenced by aberrant protein acetylation modifications of gene expression crucial for kidney functions. Histone deacetylase (HDAC) expression alterations are detected from renal samples of patients and animal models of various kidney diseases, and the administrations of HDAC inhibitors display impressive renal protective effects in vitro and in vivo. However, when the expression alterations of multiple HDACs occur, not all the HDACs causally affect the disease onset or progression. Identification of a single HDAC as a disease-causing factor will allow subtype-targeted intervention with less side effect. HDAC3 is a unique HDAC with distinct structural and subcellular distribution features and co-repressor dependency. HDAC3 is required for kidney development and its aberrations actively participate in many pathological processes, such as cancer, cardiovascular diseases, diabetes, and neurodegenerative disorders, and contribute significantly to the pathogenesis of kidney diseases. This review will discuss the recent studies that investigate the critical roles of HDAC3 aberrations in kidney development, renal aging, renal cell carcinoma, renal fibrosis, chronic kidney disease, polycystic kidney disease, glomerular podocyte injury, and diabetic nephropathy. These studies reveal the distinct characters of HDAC3 aberrations that act on different molecules/signaling pathways under various renal pathological conditions, which might shed lights into the epigenetic mechanisms of renal diseases and the potentially therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koye DN, Magliano DJ, Nelson RG, Pavkov ME (2018) The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis 25:121–132. https://doi.org/10.1053/j.ackd.2017.10.011

    Article  PubMed  Google Scholar 

  2. Wanner N, Bechtel-Walz W (2017) Epigenetics of kidney disease. Cell Tissue Res 369:75–92. https://doi.org/10.1007/s00441-017-2588-x

    Article  CAS  PubMed  Google Scholar 

  3. Tampe B, Zeisberg M (2013) Contribution of genetics and epigenetics to progression of kidney fibrosis. Nephrol Dial Transplant 29:iv72-iv79. https://doi.org/10.1093/ndt/gft025

  4. Xia J, Cao W (2021) Epigenetic modifications of Klotho expression in kidney diseases. J Mol Med. https://doi.org/10.1007/s00109-021-02044-8

  5. Pasyukova EG, Vaiserman AM (2017) HDAC inhibitors: a new promising drug class in anti-aging research. Mech Ageing Dev 166:6–15. https://doi.org/10.1016/j.mad.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  6. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31. https://doi.org/10.1016/j.jmb.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  7. Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, Cristea IM (2013) The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 9:672. https://doi.org/10.1038/msb.2013.26

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 30:61–72. https://doi.org/10.1016/j.molcel.2008.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang W-M, Tsai S-C, Wen Y-D, Fejér G, Seto E (2002) Functional domains of histone deacetylase-3. J Biol Chem 277:9447–9454. https://doi.org/10.1074/jbc.M105993200

    Article  CAS  PubMed  Google Scholar 

  10. Yang WM, Yao YL, Sun JM, Davie JR, Seto E (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272:28001–28007. https://doi.org/10.1074/jbc.272.44.28001

    Article  CAS  PubMed  Google Scholar 

  11. Takami Y, Nakayama T (2000) N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem 275:16191–16201. https://doi.org/10.1074/jbc.M908066199

    Article  CAS  PubMed  Google Scholar 

  12. Grégoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, Wong J, Seto E, Yang XJ (2007) Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27:1280–1295. https://doi.org/10.1128/mcb.00882-06

    Article  PubMed  Google Scholar 

  13. Sarkar R, Banerjee S, Amin SA, Adhikari N, Jha T (2020) Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: a review. Eur J Med Chem 192:112171. https://doi.org/10.1016/j.ejmech.2020.112171

    Article  CAS  PubMed  Google Scholar 

  14. Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, Seto E (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA 97:7202–7207. https://doi.org/10.1073/pnas.97.13.7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tabata T, Kokura K, ten Dijke P, Ishii S (2009) Ski co-repressor complexes maintain the basal repressed state of the TGF-β target gene, SMAD7, via HDAC3 and PRMT5. Genes Cells 14:17–28. https://doi.org/10.1111/j.1365-2443.2008.01246.x

    Article  CAS  PubMed  Google Scholar 

  16. Emmett MJ, Lazar MA (2018) Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 20:102–115. https://doi.org/10.1038/s41580-018-0076-0

    Article  CAS  Google Scholar 

  17. Adhikari N, Amin SA, Trivedi P, Jha T, Ghosh B (2018) HDAC3 is a potential validated target for cancer: an overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. Eur J Med Chem 157:1127–1142. https://doi.org/10.1016/j.ejmech.2018.08.081

    Article  CAS  PubMed  Google Scholar 

  18. Mariadason JM (2014) Dissecting HDAC3-mediated tumor progression. Cancer Biol Ther 7:1581–1583. https://doi.org/10.4161/cbt.7.10.6863

    Article  Google Scholar 

  19. Wu M-Z, Tsai Y-P, Yang M-H, Huang C-H, Chang S-Y, Chang C-C, Teng S-C, Wu K-J (2011) Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell 43:811–822. https://doi.org/10.1016/j.molcel.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Barozzi I, Termanini A, Prosperini E, Recchiuti A, Dalli J, Mietton F, Matteoli G, Hiebert S, Natoli G (2012) Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci 109:E2865–E2874. https://doi.org/10.1073/pnas.1121131109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yao Y, Liu Q, Adrianto I, Wu X, Glassbrook J, Khalasawi N, Yin C, Yi Q, Dong Z, Geissmann F, Zhou L (2020) Histone deacetylase 3 controls lung alveolar macrophage development and homeostasis. Nat Commun 11. https://doi.org/10.1038/s41467-020-17630-6

  22. Nguyen HCB, Adlanmerini M, Hauck AK, Lazar MA (2020) Dichotomous engagement of HDAC3 activity governs inflammatory responses. Nature 584:286–290. https://doi.org/10.1038/s41586-020-2576-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sathishkumar C, Prabu, Balakumar M, Lenin R, Prabhu, Anjana RM, Mohan V, Balasubramanyam M (2016) Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clin Epigenetics 8. https://doi.org/10.1186/s13148-016-0293-3

  24. Meier BC, Wagner BK (2014) Inhibition of HDAC3 as a strategy for developing novel diabetes therapeutics. Epigenomics 6:209–214

  25. Hoeksema MA, Gijbels MJJ, Van den Bossche J, Velden S, Sijm A, Neele AE, Seijkens T, Stöger JL, Meiler S, Boshuizen MCS, Dallinga-Thie GM, Levels JHM, Boon L, Mullican SE, Spann NJ, Cleutjens JP, Glass CK, Lazar MA, Vries CJM, Biessen EAL, Daemen MJAP, Lutgens E, Winther MPJ (2014) Targeting macrophage histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med 6:1124–1132. https://doi.org/10.15252/emmm.201404170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Molstad DHH, Mattson AM, Begun DL, Westendorf JJ, Bradley EW (2020) Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. J Biol Chem 295:17713–17723. https://doi.org/10.1074/jbc.RA120.013573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Molstad DHH, Zars E, Norton A, Mansky KC, Westendorf JJ, Bradley EW (2020) Hdac3 deletion in myeloid progenitor cells enhances bone healing in females and limits osteoclast fusion via Pmepa1. Sci Rep 10:21804. https://doi.org/10.1038/s41598-020-78364-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feigenson M, Shull LC, Taylor EL, Camilleri ET, Riester SM, van Wijnen AJ, Bradley EW, Westendorf JJ (2017) Histone deacetylase 3 deletion in mesenchymal progenitor cells hinders long bone development. J Bone Miner Res 32:2453–2465. https://doi.org/10.1002/jbmr.3236

    Article  CAS  PubMed  Google Scholar 

  29. D’Mello SR (2020) Histone deacetylase-3: friend and foe of the brain. Exp Biol Med (Maywood) 245:1130–1141. https://doi.org/10.1177/1535370220928278

    Article  CAS  Google Scholar 

  30. Chen S, El-Dahr SS (2012) Histone deacetylases in kidney development: implications for disease and therapy. Pediatr Nephrol 28:689–698. https://doi.org/10.1007/s00467-012-2223-8

    Article  PubMed  Google Scholar 

  31. Mason K, Liu Z, Aguirre-Lavin T, Beaujean N (2012) Chromatin and epigenetic modifications during early mammalian development. Anim Reprod Sci 134:45–55. https://doi.org/10.1016/j.anireprosci.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  32. Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, Bachvarov D, El-Dahr SS (2011) Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem 286:32775–32789. https://doi.org/10.1074/jbc.M111.248278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. You SH, Lim HW, Sun Z, Broache M, Won KJ, Lazar MA (2013) Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol 20:182–187. https://doi.org/10.1038/nsmb.2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, Wu H. (2020) CUX1, a controversial player in tumor development. Frontiers in oncology. Front Oncol 10. https://doi.org/10.3389/fonc.2020.00738

  35. Sharma M, Brantley JG, Vassmer D, Chaturvedi G, Baas J, Vanden Heuvel GB (2009) The homeodomain protein Cux1 interacts with Grg4 to repress p27 kip1 expression during kidney development. Gene 439:87–94. https://doi.org/10.1016/j.gene.2009.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nitta K, Okada K, Yanai M, Takahashi S (2013) Aging and chronic kidney disease. Kidney Blood Press Res 38:109–120. https://doi.org/10.1159/000355760

    Article  PubMed  Google Scholar 

  37. Wei SY, Pan SY, Li B, Chen YM, Lin SL (2020) Rejuvenation: turning back the clock of aging kidney. J Formos Med Assoc 119:898–906. https://doi.org/10.1016/j.jfma.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  38. Fang Y, Gong AY, Haller ST, Dworkin LD, Liu Z, Gong R (2020) The ageing kidney: molecular mechanisms and clinical implications. Ageing Res Rev 63:101151. https://doi.org/10.1016/j.arr.2020.101151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE (2019) From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 11. https://doi.org/10.15252/emmm.201809854

  40. Osanai T, Tanaka M, Mikami K, Kitajima M, Tomisawa T, Magota K, Tomita H, Okumura K (2018) Novel anti-aging gene NM_026333 contributes to proton-induced aging via NCX1-pathway. J Mol Cell Cardiol 125:174–184. https://doi.org/10.1016/j.yjmcc.2018.10.021

    Article  CAS  PubMed  Google Scholar 

  41. Shiels PG, McGuinness D, Eriksson M, Kooman JP, Stenvinkel P (2017) The role of epigenetics in renal ageing. Nat Rev Nephrol 13:471–482. https://doi.org/10.1038/nrneph.2017.78

    Article  CAS  PubMed  Google Scholar 

  42. Chen F, Gao Q, Wei A, Chen X, Shi Y, Wang H (2020) Histone deacetylase 3 aberration inhibits Klotho transcription and promotes renal fibrosis. DOI. https://doi.org/10.1038/s41418-020-00631-9

    Article  Google Scholar 

  43. Lin W, Zhang Q, Liu L, Yin S, Liu Z, Cao W (2017) Klotho restoration via acetylation of peroxisome proliferation-activated receptor γ reduces the progression of chronic kidney disease. Kidney Int 92:669–679. https://doi.org/10.1016/j.kint.2017.02.023

    Article  CAS  PubMed  Google Scholar 

  44. Weichert W, Röske A, Gekeler V, Beckers T, Ebert MPA, Pross M, Dietel M, Denkert C, Röcken C (2008) Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 9:139–148. https://doi.org/10.1016/s1470-2045(08)70004-4

    Article  CAS  PubMed  Google Scholar 

  45. Yang M, Dang X, Tan Y, Wang M, Li X, Li G (2018) I-7ab inhibited the growth of TNBC cells via targeting HDAC3 and promoting the acetylation of p53. Biomed Pharmacother 99:220–226. https://doi.org/10.1016/j.biopha.2018.01.063

    Article  CAS  PubMed  Google Scholar 

  46. Narita N, Fujieda S, Tokuriki M, Takahashi N, Tsuzuki H, Ohtsubo T, Matsumoto H (2005) Inhibition of histone deacetylase 3 stimulates apoptosis induced by heat shock under acidic conditions in human maxillary cancer. Oncogene 24:7346–7354. https://doi.org/10.1038/sj.onc.1208879

    Article  CAS  PubMed  Google Scholar 

  47. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V (2017) Renal cell carcinoma. Nat Rev Dis Primers 3:17009. https://doi.org/10.1038/nrdp.2017.9

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cha TL, Chuang MJ, Wu ST, Sun GH, Chang SY, Yu DS, Huang SM, Huan SK, Cheng TC, Chen TT, Fan PL, Hsiao PW (2009) Dual degradation of aurora A and B kinases by the histone deacetylase inhibitor LBH589 induces G2-M arrest and apoptosis of renal cancer cells. Clinical cancer research: an official Journal of the American Association for Cancer Research 15:840–850. https://doi.org/10.1158/1078-0432.ccr-08-1918

    Article  CAS  Google Scholar 

  49. Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E (2019) BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex—a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin 12:68. https://doi.org/10.1186/s13072-019-0315-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Z, Li J, Guo H, Wang F, Ma L, Du C, Wang Y, Wang Q, Kornmann M, Tian X, Yang Y (2019) BRM transcriptionally regulates miR-302a-3p to target SOCS5/STAT3 signaling axis to potentiate pancreatic cancer metastasis. Cancer Lett 449:215–225. https://doi.org/10.1016/j.canlet.2019.02.031

    Article  CAS  PubMed  Google Scholar 

  51. Yang Y, Liu L, Fang M, Bai H, Xu Y (2019) The chromatin remodeling protein BRM regulates the transcription of tight junction proteins: implication in breast cancer metastasis. Biochim Biophys Acta Gene Regul Mech 1862:547–556. https://doi.org/10.1016/j.bbagrm.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  52. Fang R, Pan R, Wang X, Liang Y, Wang X, Ma H, Zhou X, Xia Q, Rao Q (2020) Inactivation of BRM/SMARCA2 sensitizes clear cell renal cell carcinoma to histone deacetylase complex inhibitors. Pathol Res Pract 216:152867. https://doi.org/10.1016/j.prp.2020.152867

    Article  CAS  PubMed  Google Scholar 

  53. Kang YK, Schiff R, Ko L, Wang T, Tsai SY, Tsai MJ, O’Malley BW (2008) Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis. Can Res 68:7887–7896. https://doi.org/10.1158/0008-5472.can-08-1734

    Article  CAS  Google Scholar 

  54. Shah RR (2019) Safety and tolerability of histone deacetylase (HDAC) inhibitors in oncology. Drug Saf 42:235–245. https://doi.org/10.1007/s40264-018-0773-9

    Article  CAS  PubMed  Google Scholar 

  55. Pili R, Liu G, Chintala S, Verheul H, Rehman S, Attwood K, Lodge MA, Wahl R, Martin JI, Miles KM et al (2017) Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial. Br J Cancer 116:874–883. https://doi.org/10.1038/bjc.2017.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pili R, Quinn DI, Hammers HJ, Monk P, George S, Dorff TB, Olencki T, Shen L, Orillion A, Lamonica D et al (2017) Immunomodulation by entinostat in renal cell carcinoma patients receiving high-dose interleukin 2: a multicenter, single-arm, phase I/II trial (NCI-CTEP#7870). Clin Cancer Res 23:7199–7208. https://doi.org/10.1158/1078-0432.ccr-17-1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21:1819–1834. https://doi.org/10.1681/asn.2010080793

    Article  CAS  PubMed  Google Scholar 

  58. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. https://doi.org/10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Casalena G, Daehn I, Bottinger E (2012) Transforming growth factor-β, bioenergetics, and mitochondria in renal disease. Semin Nephrol 32:295–303. https://doi.org/10.1016/j.semnephrol.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  60. Cao W, Mattagajasingh SN, Xu H, Kim K, Fierlbeck W, Deng J, Lowenstein CJ, Ballermann BJ (2002) TIMAP, a novel CAAX box protein regulated by TGF-β1 and expressed in endothelial cells. Am J Physiol Cell Physiol 283:C327–C337. https://doi.org/10.1152/ajpcell.00442.2001

    Article  CAS  PubMed  Google Scholar 

  61. Yang J, Yin S, Bi F, Liu L, Qin T, Wang H, Cao W (2016) TIMAP repression by TGFβ and HDAC3-associated Smad signaling regulates macrophage M2 phenotypic phagocytosis. J Mol Med 95:273–285. https://doi.org/10.1007/s00109-016-1479-z

    Article  CAS  PubMed  Google Scholar 

  62. Hartshorne DJ, Ito M, Erdödi F (2004) Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J Biol Chem 279:37211–37214. https://doi.org/10.1074/jbc.R400018200

    Article  CAS  PubMed  Google Scholar 

  63. Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS (2013) Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 33:363–374. https://doi.org/10.1016/j.semnephrol.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  64. Corrales P, Izquierdo-Lahuerta A, Medina-Gómez G (2018) Maintenance of kidney metabolic homeostasis by PPAR gamma. Int J Mol Sci 19:2063. https://doi.org/10.3390/ijms19072063

    Article  CAS  PubMed Central  Google Scholar 

  65. Neyra JA, Hu MC (2016) αKlotho and chronic kidney disease. 101: 257–310. https://doi.org/10.1016/bs.vh.2016.02.007

  66. Neyra JA, Hu MC (2017) Potential application of Klotho in human chronic kidney disease. Bone 100:41–49. https://doi.org/10.1016/j.bone.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi D, Kim CL, Kim JE, Mo JS, Jeong HS (2020) Hesperetin inhibit EMT in TGF-beta treated podocyte by regulation of mTOR pathway. Biochem Biophys Res Commun 528:154–159. https://doi.org/10.1016/j.bbrc.2020.05.087

    Article  CAS  PubMed  Google Scholar 

  68. Huang S, Susztak K (2016) Epithelial plasticity versus EMT in kidney fibrosis. Trends Mol Med 22:4–6. https://doi.org/10.1016/j.molmed.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  69. Lovisa S, Zeisberg M, Kalluri R (2016) Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol Metab 27:681–695. https://doi.org/10.1016/j.tem.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  70. Liu KH, Fu J, Zhou N, Yin W, Yang YY, Ouyang SX, Liang YM (2019) 1,25-Dihydroxyvitamin D3 prevents epithelial-mesenchymal transition of HMrSV5 human peritoneal mesothelial cells by inhibiting histone deacetylase 3 (HDAC3) and increasing vitamin D receptor (VDR) expression through the Wnt/β-catenin signaling pathway. Med Sci Monit 25:5892–5902. https://doi.org/10.12659/msm.916313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shan Q, Zheng G, Zhu A, Cao L, Lu J, Wu D, Zhang Z, Fan S, Sun C, Hu B, Zheng Y (2016) Epigenetic modification of miR-10a regulates renal damage by targeting CREB1 in type 2 diabetes mellitus. Toxicol Appl Pharmacol 306:134–143. https://doi.org/10.1016/j.taap.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  72. Li Q, Ge C, Tan J, Sun Y, Kuang Q, Dai X, Zhong S, Yi C, Hu L, Lou D, Xu M (2021) Juglanin protects against high fat diet-induced renal injury by suppressing inflammation and dyslipidemia via regulating NF-kappaB/HDAC3 signaling. Int Immunopharmacol 95:107340. https://doi.org/10.1016/j.intimp.2020.107340

    Article  CAS  PubMed  Google Scholar 

  73. Foo JN, Xia Y (2019) Polycystic kidney disease: new knowledge and future promises. Curr Opin Genet Dev 56:69–75. https://doi.org/10.1016/j.gde.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  74. Livingston S, Carlton C, Sharma M, Kearns D, Baybutt R, Vanden Heuvel GB (2019) Cux1 regulation of the cyclin kinase inhibitor p27(kip1) in polycystic kidney disease is attenuated by HDAC inhibitors. Gene: X 2. https://doi.org/10.1016/j.gene.2019.100007

  75. Li K-J, Shiau A-L, Chiou Y-Y, Yo Y-T, Wu C-L (2005) Transgenic overexpression of prothymosin α induces development of polycystic kidney disease11See Editorial by Gattone, p. 2063. Kidney Int 67:1710–1722. https://doi.org/10.1111/j.1523-1755.2005.00268.x

    Article  CAS  PubMed  Google Scholar 

  76. Chen YC, Su YC, Shieh GS, Su BH, Su WC, Huang PH, Jiang ST, Shiau AL, Wu CL (2019) Prothymosin α promotes STAT3 acetylation to induce cystogenesis in Pkd1-deficient mice. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 33:13051–13061. https://doi.org/10.1096/fj.201900504R

    Article  CAS  Google Scholar 

  77. Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science (New York, NY) 307:269–273. https://doi.org/10.1126/science.1105166

    Article  CAS  Google Scholar 

  78. Braun F, Becker JU, Brinkkoetter PT (2016) Live or let die: is there any cell death in podocytes? Semin Nephrol 36:208–219. https://doi.org/10.1016/j.semnephrol.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  79. Wu J, Zheng C, Fan Y, Zeng C, Chen Z, Qin W, Zhang C, Zhang W, Wang X, Zhu X, Zhang M, Zen K, Liu Z (2014) Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J Am Soc Nephrol 25:92–104. https://doi.org/10.1681/asn.2012111101

    Article  CAS  PubMed  Google Scholar 

  80. Wu J, Zheng C, Wang X, Yun S, Zhao Y, Liu L, Lu Y, Ye Y, Zhu X, Zhang C, Shi S, Liu Z (2015) MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes. J Clin Investig 125:4091–4106. https://doi.org/10.1172/jci81061

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bhati M, D. Prabhu Y, Renu K, Vellingiri B, Thiagarajan P, Panda A, Chakraborty R, Myakala H, Valsala Gopalakrishnan A, (2020) Role of TGF-β signalling in PCOS associated focal segmental glomerulosclerosis. Clin Chim Acta 510:244–251. https://doi.org/10.1016/j.cca.2020.07.032

    Article  CAS  PubMed  Google Scholar 

  82. Liu L, Lin W, Zhang Q, Cao W, Liu Z (2015) TGF-β induces miR-30d down-regulation and podocyte injury through Smad2/3 and HDAC3-associated transcriptional repression. J Mol Med 94:291–300. https://doi.org/10.1007/s00109-015-1340-9

    Article  CAS  PubMed  Google Scholar 

  83. Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, Rusche JR, Wood MA (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci 110:2647–2652. https://doi.org/10.1073/pnas.1213364110

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang L, Chen Y, Jiang Q, Song W, Zhang L (2019) Therapeutic potential of selective histone deacetylase 3 inhibition. Eur J Med Chem 162:534–542. https://doi.org/10.1016/j.ejmech.2018.10.072

    Article  CAS  PubMed  Google Scholar 

  85. Cao F, Zwinderman MRH, Dekker FJ (2018) The process and strategy for developing selective histone deacetylase 3 inhibitors. Molecules 23:551. https://doi.org/10.3390/molecules23030551

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank formal and current lab members Dr. Lin Liu, Wenjun Lin, Jun Yang, and Fang Chen for their contributions to the publications cited in this article.

Funding

This study is supported by research grants from National Nature Science Foundation of China General Program 81970577 and 81670762.

Author information

Authors and Affiliations

Authors

Contributions

Conceptual design, WC; data mining and collection, LZ; manuscript preparation, LZ and WC; manuscript editing and writing, WC. Both authors approved the final version of the manuscript.

Corresponding author

Correspondence to Wangsen Cao.

Ethics declarations

Availability of supporting data

Not applicable.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Cao, W. Histone deacetylase 3 (HDAC3) as an important epigenetic regulator of kidney diseases. J Mol Med 100, 43–51 (2022). https://doi.org/10.1007/s00109-021-02141-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02141-8

Keywords

Navigation