Skip to main content
Log in

Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are head-to-tail back-spliced RNA transcripts that have been linked to several biological processes and their perturbation is evident in human disease, including neurological disorders. There is also emerging research suggesting circRNA expression may also be altered in psychiatric and behavioural syndromes. Here, we provide a comprehensive analysis of circRNA expression in peripheral blood mononuclear cells (PBMCs) from 39 patients with schizophrenia and bipolar disorder as well as 20 healthy individuals using deep RNA-seq. We observed systematic alternative splicing leading to a complex and diverse profile of RNA transcripts including 8762 high confidence circRNAs. More specific scrutiny of the circular transcriptome in schizophrenia and bipolar disorder, compared to a non-psychiatric control group, revealed significant dysregulation of 55 circRNAs with a bias towards downregulation. These molecules were predicted to interact with a large number of miRNAs that target genes enriched in psychiatric disorders. Further replication and cross-validation to determine the specificity of these circRNAs across broader diagnostic groups and subgroups in psychiatry will enable their potential utility as biomarkers to be established.

Key messages

• We identified 8762 high confidence circRNAs with systematic alternative splicing in human PBMCs.

• CircRNAs were dysregulated in schizophrenia and bipolar disorder, compared to a non-psychiatric control group.

• The DE circRNAs were predicted to interact with miRNAs with target genes enriched in psychiatric disorders.

• Some circRNAs have the potential to serve as biomarkers in psychiatry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

As the sequencing data belong to patients, we cannot make them available at this stage.

Code availability

Not applicable.

References

  1. Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. P T 39(9):638–645

    PubMed  PubMed Central  Google Scholar 

  2. Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, Gao K, Miskowiak KW, Grande I (2018) Bipolar disorders. Nat Rev Dis Primers 4:18008

    Article  PubMed  Google Scholar 

  3. Cardno AG, Owen MJ (2014) Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull 40(3):504–515

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shao L, Vawter MP (2008) Shared gene expression alterations in schizophrenia and bipolar disorder. Biol Psychiatry 64(2):89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geaghan M, Cairns MJ (2015) MicroRNA and posttranscriptional dysregulation in psychiatry. Biol Psychiatry 78(4):231–239

    Article  CAS  PubMed  Google Scholar 

  6. Mahmoudi E, Cairns MJ (2017) MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry 22(1):44–55

    Article  CAS  PubMed  Google Scholar 

  7. Rusconi F, Battaglioli E, Venturin M (2020) Psychiatric disorders and lncRNAs: a synaptic match. Int J Mol Sci 21(9). https://doi.org/10.3390/ijms21093030

  8. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  9. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahmoudi E, Cairns MJ (2019) Circular RNAs are temporospatially regulated throughout development and ageing in the rat. Sci Rep 9(1):2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaffo E, Boldrin E, Dal Molin A, Bresolin S, Bonizzato A, Trentin L, Frasson C, Debatin K-M, Meyer LH, te Kronnie G, Bortoluzzi S (2019) Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci Rep 9(1):14670

    Article  PubMed  PubMed Central  Google Scholar 

  12. Veno MT, Hansen TB, Veno ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Q, Zhang X, Hu X, Dai L, Fu X, Zhang J, Ao Y (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘sponge’ in human cartilage degradation. Sci Rep 6:22572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  PubMed  Google Scholar 

  16. Haque S, Harries LW (2017) Circular RNAs (circRNAs) in health and disease. Genes (Basel) 8(12). https://doi.org/10.3390/genes8120353

  17. Fischer JW, Leung AK (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52(2):220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37 e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia X, Tang X, Wang S (2019) Roles of CircRNAs in autoimmune diseases. Front Immunol 10:639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, Wang H, Liao Q, Wang W (2019) Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer 18(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fan X, Weng X, Zhao Y, Chen W, Gan T, Xu D (2017) Circular RNAs in cardiovascular disease: an overview. Biomed Res Int 2017:5135781–5135789

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mehta SL, Dempsey RJ, Vemuganti R (2020) Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol 186:101746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lei B, Tian Z, Fan W, Ni B (2019) Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci 16(2):292–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iparraguirre L, Munoz-Culla M, Prada-Luengo I, Castillo-Trivino T, Olascoaga J, Otaegui D (2017) Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet 26(18):3564–3572

    Article  CAS  PubMed  Google Scholar 

  25. Dolinar A, Koritnik B, Glavač D, Ravnik-Glavač M (2019) Circular RNAs as potential blood biomarkers in amyotrophic lateral sclerosis. Mol Neurobiol 56(12):8052–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L (2016) hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomark Med 10(9):943–952

    Article  CAS  PubMed  Google Scholar 

  27. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kuhn R, Rosenmund C, Birchmeier C, Rajewsky N (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357):eaam8526

    Article  PubMed  Google Scholar 

  29. Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ (2019) Depolarization-associated CircRNA regulate neural gene expression and in some cases may function as templates for translation. Cells 9(1). https://doi.org/10.3390/cells9010025

  30. Zhang J, Chen S, Yang J, Zhao F (2020) Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun 11(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  31. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  32. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F (2016) Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 7:12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu W, Ji P, Zhao F (2020) CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 21(1):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu M, Wang Q, Shen J, Yang BB, Ding X (2019) Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol 16(7):899–905

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yao D, Zhang L, Zheng M, Sun X, Lu Y, Liu P (2018) Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep 8(1):11018

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rophina M, Sharma D, Poojary M, Scaria V (2020) Circad: a comprehensive manually curated resource of circular RNA associated with diseases. Database 2020. https://doi.org/10.1093/database/baaa019

  40. Zhao Z, Wang K, Wu F, Wang W, Zhang K, Hu H, Liu Y, Jiang T (2018) circRNA disease: a manually curated database of experimentally supported circRNA-disease associations. Cell Death Dis 9(5):475

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, Wei L, Han L, He C (2018) CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res 46(D1):D925–D929

    Article  CAS  PubMed  Google Scholar 

  42. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. The Gene Ontology C (2019) The Gene Ontology resource: 20 years and still GOing strong. Nucleic Acids Res 47(D1):D330–D338

    Article  Google Scholar 

  44. Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 563:123–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York

    Book  Google Scholar 

  47. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahmoudi E, Fitzsimmons C, Geaghan MP, Shannon Weickert C, Atkins JR, Wang X, Cairns MJ (2019) Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology 44(6):1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P, Zhao F (2019) Expanded expression landscape and prioritization of circular rnas in mammals. Cell Rep 26(12):3444–3460 e3445

    Article  CAS  PubMed  Google Scholar 

  51. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  52. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230

    Article  CAS  PubMed  Google Scholar 

  54. Li H, Li K, Lai W, Li X, Wang H, Yang J, Chu S, Wang H, Kang C, Qiu Y (2018) Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 480:17–25

    Article  CAS  PubMed  Google Scholar 

  55. Huang ZK, Yao FY, Xu JQ, Deng Z, Su RG, Peng YP, Luo Q, Li JM (2018) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem 45(3):1230–1240

    Article  CAS  PubMed  Google Scholar 

  56. Lasda E, Parker R (2016) Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One 11(2):e0148407

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X, Li X (2018) Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res 37(1):177

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pan RY, Liu P, Zhou HT, Sun WX, Song J, Shu J, Cui GJ, Yang ZJ, Jia EZ (2017) Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget 8(36):60280–60290

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, Huang H, Pers TH, Agartz I, Agerbo E, Albus M, Alexander M, Amin F, Bacanu SA, Begemann M, Belliveau RA Jr, Bene J, Bergen SE, Bevilacqua E, Bigdeli TB, Black DW, Bruggeman R, Buccola NG, Buckner RL, Byerley W, Cahn W, Cai G, Campion D, Cantor RM, Carr VJ, Carrera N, Catts SV, Chambert KD, Chan RCK, Chen RYL, Chen EYH, Cheng W, Cheung EFC, Ann Chong S, Robert Cloninger C, Cohen D, Cohen N, Cormican P, Craddock N, Crowley JJ, Curtis D, Davidson M, Davis KL, Degenhardt F, Del Favero J, Demontis D, Dikeos D, Dinan T, Djurovic S, Donohoe G, Drapeau E, Duan J, Dudbridge F, Durmishi N, Eichhammer P, Eriksson J, Escott-Price V, Essioux L, Fanous AH, Farrell MS, Frank J, Franke L, Freedman R, Freimer NB, Friedl M, Friedman JI, Fromer M, Genovese G, Georgieva L, Giegling I, Giusti-Rodríguez P, Godard S, Goldstein JI, Golimbet V, Gopal S, Gratten J, de Haan L, Hammer C, Hamshere ML, Hansen M, Hansen T, Haroutunian V, Hartmann AM, Henskens FA, Herms S, Hirschhorn JN, Hoffmann P, Hofman A, Hollegaard MV, Hougaard DM, Ikeda M, Joa I, Julià A, Kahn RS, Kalaydjieva L, Karachanak-Yankova S, Karjalainen J, Kavanagh D, Keller MC, Kennedy JL, Khrunin A, Kim Y, Klovins J, Knowles JA, Konte B, Kucinskas V, Ausrele Kucinskiene Z, Kuzelova-Ptackova H, Kähler AK, Laurent C, Lee Chee Keong J, Hong Lee S, Legge SE, Lerer B, Li M, Li T, Liang K-Y, Lieberman J, Limborska S, Loughland CM, Lubinski J, Lönnqvist J, Macek M Jr, Magnusson PKE, Maher BS, Maier W, Mallet J, Marsal S, Mattheisen M, Mattingsdal M, McCarley RW, McDonald C, McIntosh AM, Meier S, Meijer CJ, Melegh B, Melle I, Mesholam-Gately RI, Metspalu A, Michie PT, Milani L, Milanova V, Mokrab Y, Morris DW, Mors O, Murphy KC, Murray RM, Myin-Germeys I, Müller-Myhsok B, Nelis M, Nenadic I, Nertney DA, Nestadt G, Nicodemus KK, Nikitina-Zake L, Nisenbaum L, Nordin A, O’Callaghan E, O’Dushlaine C, O’Neill FA, Oh S-Y, Olincy A, Olsen L, Van Os J, Pantelis C, Papadimitriou GN, Papiol S, Parkhomenko E, Pato MT, Paunio T, Pejovic-Milovancevic M, Perkins DO, Pietiläinen O, Pimm J, Pocklington AJ, Powell J, Price A, Pulver AE, Purcell SM, Quested D, Rasmussen HB, Reichenberg A, Reimers MA, Richards AL, Roffman JL, Roussos P, Ruderfer DM, Salomaa V, Sanders AR, Schall U, Schubert CR, Schulze TG, Schwab SG, Scolnick EM, Scott RJ, Seidman LJ, Shi J, Sigurdsson E, Silagadze T, Silverman JM, Sim K, Slominsky P, Smoller JW, So H-C, Spencer CA, Stahl EA, Stefansson H, Steinberg S, Stogmann E, Straub RE, Strengman E, Strohmaier J, Scott Stroup T, Subramaniam M, Suvisaari J, Svrakic DM, Szatkiewicz JP, Söderman E, Thirumalai S, Toncheva D, Tosato S, Veijola J, Waddington J, Walsh D, Wang D, Wang Q, Webb BT, Weiser M, Wildenauer DB, Williams NM, Williams S, Witt SH, Wolen AR, Wong EHM, Wormley BK, Simon Xi H, Zai CC, Zheng X, Zimprich F, Wray NR, Stefansson K, Visscher PM, Trust Case-Control Consortium W, Adolfsson R, Andreassen OA, Blackwood DHR, Bramon E, Buxbaum JD, Børglum AD, Cichon S, Darvasi A, Domenici E, Ehrenreich H, Esko T, Gejman PV, Gill M, Gurling H, Hultman CM, Iwata N, Jablensky AV, Jönsson EG, Kendler KS, Kirov G, Knight J, Lencz T, Levinson DF, Li QS, Liu J, Malhotra AK, McCarroll SA, McQuillin A, Moran JL, Mortensen PB, Mowry BJ, Nöthen MM, Ophoff RA, Owen MJ, Palotie A, Pato CN, Petryshen TL, Posthuma D, Rietschel M, Riley BP, Rujescu D, Sham PC, Sklar P, St Clair D, Weinberger DR, Wendland JR, Werge T, Schizophrenia Working Group of the Psychiatric Genomics C, Psychosis Endophenotypes International C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427

    Article  CAS  PubMed Central  Google Scholar 

  60. Shao Y, Li J, Lu R, Li T, Yang Y, Xiao B, Guo J (2017) Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med 6(6):1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yao G, Niu W, Zhu X, He M, Kong L, Chen S, Zhang L, Cheng Z (2019) hsa_circRNA_104597: a novel potential diagnostic and therapeutic biomarker for schizophrenia. Biomark Med 13(5):331–340

    Article  CAS  PubMed  Google Scholar 

  62. Maffioletti E, Cattaneo A, Rosso G, Maina G, Maj C, Gennarelli M, Tardito D, Bocchio-Chiavetto L (2016) Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J Affect Disord 200:250–258

    Article  CAS  PubMed  Google Scholar 

  63. van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briede JJ (2020) Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 185:101732

    Article  PubMed  Google Scholar 

  64. He K, Guo C, He L, Shi Y (2018) MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 155:9

    Article  PubMed  Google Scholar 

  65. Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA, Cairns MJ (2012) Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry 17(8):827–840

    Article  CAS  PubMed  Google Scholar 

  66. Zimmerman AJ, Hafez AK, Amoah SK, Rodriguez BA, Dell’Orco M, Lozano E, Hartley BJ, Alural B, Lalonde J, Chander P, Webster MJ, Perlis RH, Brennand KJ, Haggarty SJ, Weick J, Perrone-Bizzozero N, Brigman JL, Mellios N (2020) A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol Psychiatry 25(11):2712–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, Li N, Zhou W, Yu Y, Cao X (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164

    Article  CAS  PubMed  Google Scholar 

  68. Li K, Wan CL, Guo Y (2020) Circular RNA circMTO1 suppresses RCC cancer cell progression via miR9/LMX1A axis. Technol Cancer Res Treat 19:1533033820914286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Zhong B, Zhang W, Wu J, Wang Y (2019) Circular RNA CircMTO1 inhibits proliferation of glioblastoma cells via miR-92/WWOX signaling pathway. Med Sci Monit 25:6454–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the New South Wales Health, Collaborative Genomics grant programme (MC, MG, VC), a NARSAD Independent Investigator Grant (MC) and National Health and Medical Research Council (NHMRC) project grants (1067137, 1147644, 1051672). MC is supported by an NHMRC Senior Research Fellowship (1121474) and a University of Newcastle Faculty of Health and Medicine Gladys M Brawn Senior Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

EM was involved in the research design, methodology and data analysis, and writing the first draft. MG contributed to the study design, data interpretation and revising the manuscript. MC was involved in the supervision of the project, design of the study, interpretation of data and revising the manuscript. All authors read and approved its final version.

Corresponding author

Correspondence to Murray J. Cairns.

Ethics declarations

Ethics approval

This study was approved by the Human Research Ethics committees of the University of New South Wales (HC12384), St Vincent’s Hospital (HREC/10/SVH/9) and the South East Sydney and Illawarra Area Health Service (HREC 09/081).

Consent to participate

Participants provided signed informed consent.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLS 32 kb)

ESM 2

(XLSX 339 kb)

ESM 3

(XLSX 20 kb)

ESM 4

(XLSX 113 kb)

ESM 5

(XLSX 71 kb)

ESM 6

(XLSX 15 kb)

ESM 7

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, E., Green, M.J. & Cairns, M.J. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J Mol Med 99, 981–991 (2021). https://doi.org/10.1007/s00109-021-02070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02070-6

Keywords

Navigation