Skip to main content
Log in

MAD2B promotes tubular epithelial-to-mesenchymal transition and renal tubulointerstitial fibrosis via Skp2

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The mitotic arrest deficient protein MAD2B is a well-defined anaphase-promoting complex/cyclosome (APC/C) inhibitor and a small subunit of DNA polymerase zeta. It is critical for mitotic control and DNA repair. However, the pathological role of MAD2B in kidney diseases has not been fully elucidated. In the present study, we aim to explore the role of MAD2B in the pathogenesis of renal tubulointerstitial fibrosis (TIF) and the underlying mechanism. By immunofluorescence and immunohistochemistry, we found an obvious MAD2B enhancement in tubular area of TIF patients and unilateral ureteral obstruction (UUO) mice. In vitro, transforming growth factor-β1 (TGF-β1) induced a time-dependent MAD2B accumulation prior to tubular epithelial-to-mesenchymal transition (EMT) in a rat proximal tubular epithelial cell line, NRK-52E. Knocking down MAD2B using siRNA dramatically inhibited TGF-β1-induced tubular EMT process and subsequent extracellular matrix (ECM) production. We also found that Skp2, a confirmed APC/C-CDH1 substrate and E-cadherin destroyer, was increased in TGF-β1-treated proximal tubular epithelial cells, which could be blocked by MAD2B depletion. In addition, Skp2 expression was also found to be increased in the renal tubular area of UUO mice. Locally knocking down MAD2B expression in the renal cortex using lentiviral transfection inhibited Skp2 expression, tubular EMT, and subsequent ECM accumulation. Taken together, our data suggests a pro-fibrotic role of MAD2B in the pathogenesis of tubular EMT and TIF by inducing Skp2 expression. MAD2B might be a potential target of promising interventions for renal TIF.

Key messages

  • Renal fibrosis activates MAD2B expression in renal tubules of human and mouse.

  • TGF-β1 contributes to MAD2B enhancement in rat tubular epithelial cells.

  • MAD2B depletion alleviates renal tubulointerstitial fibrosis in vivo and in vitro.

  • MAD2B promotes EMT transition in rat tubular epithelial cells by inducing Skp2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7(12):684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma SK, Zou H, Togtokh A, Ene-Iordache B, Carminati S, Remuzzi A, Wiebe N, Ayyalasomayajula B, Perico N, Remuzzi G (2010) Burden of CKD, proteinuria, and cardiovascular risk among Chinese, Mongolian, and Nepalese participants in the International Society of Nephrology screening programs. Am J Kidney Dis 56(5):915–927

    Article  PubMed  Google Scholar 

  3. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X et al (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379(9818):815–822

    Article  PubMed  Google Scholar 

  4. Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  5. Petersen M, Thorikay M, Deckers M, van Dinther M, Grygielko ET, Gellibert F, de Gouville AC, Huet S, ten Dijke P, Laping NJ (2008) Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int 73(6):705–715

    Article  CAS  PubMed  Google Scholar 

  6. Moon JA, Kim HT, Cho IS, Sheen YY, Kim DK (2006) IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int 70(7):1234–1243

    Article  CAS  PubMed  Google Scholar 

  7. Laney JD, Hochstrasser M (1999) Substrate targeting in the ubiquitin system. Cell 97(4):427–430

    Article  CAS  PubMed  Google Scholar 

  8. Jonathon P (2011) Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Bio 12(7):533

    Google Scholar 

  9. Wan Y, Liu X, Kirschner MW (2001) The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction. Mol Cell 8(5):1027–1039

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Fujita T, Wu G, Xiao X, Wan Y (2011) Phosphorylation of the anaphase-promoting complex/Cdc27 is involved in TGF-beta signaling. J Biol Chem 286(12):10041–10050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C (1999) Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58(2):181–187

    Article  CAS  PubMed  Google Scholar 

  12. Doerks T, Copley RR, Schultz J, Ponting CP, Bork P (2002) Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 12(1):47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Listovsky T, Sale JE (2013) Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset. J Cell Biol 203(1):87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, Bartkova J, Gogola E, Warmerdam D, Barazas M et al (2015) REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521(7553):541–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rimkus C, Friederichs J, Rosenberg R, Holzmann B, Siewert JR, Janssen KP (2007) Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer. Int J Cancer 120(1):207–211

    Article  CAS  PubMed  Google Scholar 

  16. Niimi K, Murakumo Y, Watanabe N, Kato T, Mii S, Enomoto A, Asai M, Asai N, Yamamoto E, Kajiyama H et al (2014) Suppression of REV7 enhances cisplatin sensitivity in ovarian clear cell carcinoma cells. Cancer Sci 105(5):545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao J, Liu S, Wang H, Zhang X, Kang T, Li Z, Deng H, Yue W, Cao S (2011) Mitotic arrest deficient protein MAD2B is overexpressed in human glioma, with depletion enhancing sensitivity to ionizing radiation. J Clin Neurosci 18(6):827–833

    Article  CAS  PubMed  Google Scholar 

  18. Su H, Wan Q, Tian XJ, He FF, Gao P, Tang H, Ye C, Fan D, Chen S, Wang YM et al (2015) MAD2B contributes to podocyte injury of diabetic nephropathy via inducing cyclin B1 and Skp2 accumulation. Am J Physiol Renal Physiol 308(7):F728–F736

    Article  CAS  PubMed  Google Scholar 

  19. Wang YM, Hao Y, Meng XF, He FF, Chen S, Gao P, Tang H, Su H, Zhang C (2015) Attenuation of glomerular endothelial cells from high glucose-induced injury by blockade of MAD2B. Cell Physiol Biochem 35(1):61–70

    Article  PubMed  Google Scholar 

  20. Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori T, Suzuki S et al (2004) Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci U S A 101(23):8687–8692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim M, Chen SW, Park SW, Kim M, D’Agati VD, Yang J, Lee HT (2009) Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int 75(8):809–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hao S, Bellner L, Ferreri NR (2013) NKCC2A and NFAT5 regulate renal TNF production induced by hypertonic NaCl intake. Am J Physiol Renal Physiol 304(5):F533–F542

    Article  CAS  PubMed  Google Scholar 

  23. Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11(4):447–455

    Article  CAS  PubMed  Google Scholar 

  24. Gao P, Meng XF, Su H, He FF, Chen S, Tang H, Tian XJ, Fan D, Wang YM, Liu JS et al (2014) Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy. Biochim Biophys Acta 1843(11):2448–2460

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H (2010) Skip the nucleus, AKT drives Skp2 and FOXO1 to the same place? Cell Cycle 9(5):868–869

    Article  CAS  PubMed  Google Scholar 

  26. Meng X, Wang X, Tian X, Yang Z, Li M, Zhang C (2014) Protection of neurons from high glucose-induced injury by deletion of MAD2B. J Cell Mol Med 18(5):844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chérif B, Alexis D, Daniela B, Aoumeur HA, Brigitte MG, Nicole L, Jean Louis T, Maurice L (2002) Interstitial expression of alpha-SMA: an early marker of chronic renal allograft dysfunction. Nephrol Dial Transpl 17(11):1993–1998

    Article  Google Scholar 

  28. Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87(2):297–307

    Article  PubMed  Google Scholar 

  29. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405

    Article  CAS  PubMed  Google Scholar 

  30. Junwei Y, Youhua L (2002) Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 13(13):96–107

    Google Scholar 

  31. Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic-Paterson DJ, Atkins RC, Lan HY (1998) Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54(3):864–876

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7 (344):re8. doi:10.1126/scisignal.2005189

  33. Barriere G, Fici P, Gallerani G, Fabbri F, Rigaud M (2015) Epithelial mesenchymal transition: a double-edged sword. Clin Transl Med 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Fang G (2001) MAD2B is an inhibitor of the anaphase-promoting complex. Genes Dev 15(14):1765–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428(6979):190–193

    Article  CAS  PubMed  Google Scholar 

  36. Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W (2009) Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol 11(4):397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qu X, Shen L, Zheng Y, Cui Y, Feng Z, Liu F, Liu J (2014) A signal transduction pathway from TGF-beta1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. J Invest Dermatol 134(1):159–167

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki S, Fukasawa H, Misaki T, Togawa A, Ohashi N, Kitagawa K, Kotake Y, Niida H, Hishida A, Yamamoto T et al (2011) Up-regulation of Cks1 and Skp2 with TNFalpha/NF-kappaB signaling in chronic progressive nephropathy. Genes Cells 16(11):1110–1120

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki S, Fukasawa H, Kitagawa K, Uchida C, Hattori T, Isobe T, Oda T, Misaki T, Ohashi N, Nakayama K et al (2007) Renal damage in obstructive nephropathy is decreased in Skp2-deficient mice. Am J Pathol 171(2):473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eddy AA (2014) Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl (2011) 4(1):2–8

    Article  CAS  Google Scholar 

  41. Inuzuka H, Gao D, Finley LW, Yang W, Wan L, Fukushima H, Chin YR, Zhai B, Shaik S, Lau AW et al (2012) Acetylation-dependent regulation of Skp2 function. Cell 150(1):179–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang Q, Huang J, Wu Q, Cai Y, Zhu L, Lu X, Chen S, Chen C, Wang Z (2014) Acquisition of epithelial-mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells. Br J Cancer 110(8):1958–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81170662, No. 31200872, No. 81470964, No. 81570671, No. 81471490, and No. 81522010), a grant from the Wuhan Science and Technology Bureau (No. 2015060101010039), and a Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130142110064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhang.

Ethics declarations

The use of parts of mouse kidney biopsies and human renal biopsies for research purposes was approved by the Ethics Committee of Huazhong University of Science and Technology. Animals were treated humanely, and all the procedures were performed according to the guidelines for use and care of laboratory animals of National Institutes of Health (NIH), and approved by the Animal Care and Use Committee (ACUC) of Tongji Medical College.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Fan, D., Lei, CT. et al. MAD2B promotes tubular epithelial-to-mesenchymal transition and renal tubulointerstitial fibrosis via Skp2. J Mol Med 94, 1297–1307 (2016). https://doi.org/10.1007/s00109-016-1448-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1448-6

Keywords

Navigation