Skip to main content

Advertisement

Log in

Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Interleukin-33 (IL-33) is a member of the IL-1 gene family and mainly expressed in the nucleus of tissue lining cells, stromal cells, and activated myeloid cells. IL-33 is considered a damage-associated molecular pattern (DAMP) molecule and plays an important role in many physiological and pathological settings such as tissue repair, allergy, autoimmune disease, infectious disease, and cancer. The biological functions of IL-33 include maintaining tissue homeostasis, enhancing type 1 and 2 cellular immune responses, and mediating fibrosis during chronic inflammation. IL-33 exerts diverse functions through signaling via its receptor ST2, which is expressed in many types of cells including regulatory T cells (Treg), group 2 innate lymphoid cells (ILC2s), myeloid cells, cytotoxic NK cells, Th2 cells, Th1 cells, and CD8+ T cells. Tumor development results in downregulation of IL-33 in epithelial cells but upregulation of IL-33 in the tumor stroma and serum. The current data suggest that IL-33 expression in tumor cells increases immunogenicity and promotes type 1 antitumor immune responses through CD8+ T cells and NK cells, whereas IL-33 in tumor stroma and serum facilitates immune suppression via Treg and myeloid-derived suppressor cell (MDSC). Understanding the role of IL-33 in cancer immunobiology sheds lights on targeting this cytokine for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moussion C, Ortega N, Girard JP (2008) The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One 3, e3331

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci U S A 104:282–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardman CS, Panova V, McKenzie AN (2013) IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur J Immunol 43:488–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT (2007) IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 117:1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Polumuri SK, Jayakar GG, Shirey KA, Roberts ZJ, Perkins DJ, Pitha PM, Vogel SN (2012) Transcriptional regulation of murine IL-33 by TLR and non-TLR agonists. J Immunol 189:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun L, Zhu Z, Cheng N, Yan Q, Ye RD (2014) Serum amyloid A induces interleukin-33 expression through an IRF7-dependent pathway. Eur J Immunol 44:2153–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39:1003–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roussel L, Erard M, Cayrol C, Girard JP (2008) Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep 9:1006–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bessa J, Meyer CA, de Vera Mudry MC, Schlicht S, Smith SH, Iglesias A, Cote-Sierra J (2014) Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J Autoimmun 55:33–41

    Article  CAS  PubMed  Google Scholar 

  10. Cayrol C, Girard JP (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A 106:9021–9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luthi AU, Cullen SP, McNeela EA et al (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31:84–98

    Article  CAS  PubMed  Google Scholar 

  12. Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158

    Article  CAS  PubMed  Google Scholar 

  13. Rickard JA, O'Donnell JA, Evans JM et al (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157:1175–1188

    Article  CAS  PubMed  Google Scholar 

  14. Lefrancais E, Cayrol C (2012) Mechanisms of IL-33 processing and secretion: differences and similarities between IL-1 family members. Eur Cytokine Netw 23:120–127

    CAS  PubMed  Google Scholar 

  15. Lefrancais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, Girard JP (2014) Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci U S A 111:15502–15507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, Cayrol C (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A 109:1673–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schiering C, Krausgruber T, Chomka A et al (2014) The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:564–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolodin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, Wagers A, Germain RN, Benoist C, Mathis D (2015) Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab 21:543–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vasanthakumar A, Moro K, Xin A et al (2015) The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol 16:276–285

    Article  CAS  PubMed  Google Scholar 

  20. Matta BM, Lott JM, Mathews LR, Liu Q, Rosborough BR, Blazar BR, Turnquist HR (2014) IL-33 is an unconventional alarmin that stimulates IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+ regulatory T cells. J Immunol 193:4010–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molofsky AB, Van Gool F, Liang HE, Van Dyken SJ, Nussbaum JC, Lee J, Bluestone JA, Locksley RM (2015) Interleukin-33 and interferon-gamma counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43:161–174

    Article  CAS  PubMed  Google Scholar 

  22. Brunner SM, Schiechl G, Falk W, Schlitt HJ, Geissler EK, Fichtner-Feigl S (2011) Interleukin-33 prolongs allograft survival during chronic cardiac rejection. Transpl Int 24:1027–1039

    Article  CAS  PubMed  Google Scholar 

  23. Turnquist HR, Zhao Z, Rosborough BR et al (2011) IL-33 expands suppressive CD11b + Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol 187:4598–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin H, Li X, Hu S, Liu T, Yuan B, Gu H, Ni Q, Zhang X, Zheng F (2013) IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages. Mol Immunol 56:347–353

    Article  CAS  PubMed  Google Scholar 

  25. Rak GD, Osborne LC, Siracusa MC, Kim BS, Wang K, Bayat A, Artis D, Volk SW (2015) IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J Investig Dermatol. doi:10.1038/jid.2015.406

    Google Scholar 

  26. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY (2015) A distinct function of regulatory T cells in tissue protection. Cell 162:1078–1089

    Article  CAS  PubMed  Google Scholar 

  27. Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrafita D, Robinson JH, Liew FY (1998) Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med 187:787–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC, Levinson D, Radbruch A, Kamradt T (1998) T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci U S A 95:6930–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544

    Article  CAS  PubMed  Google Scholar 

  30. Neill DR, Wong SH, Bellosi A et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A 107:11489–11494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liew FY, Pitman NI, McInnes IB (2010) Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol 10:103–110

    Article  CAS  PubMed  Google Scholar 

  33. Molofsky AB, Savage AK, Locksley RM (2015) Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42:1005–1019

    Article  CAS  PubMed  Google Scholar 

  34. Saluja R, Khan M, Church MK, Maurer M (2015) The role of IL-33 and mast cells in allergy and inflammation. Clin Transl Allergy 5:33

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bourgeois E, Van LP, Samson M et al (2009) The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol 39:1046–1055

    Article  CAS  PubMed  Google Scholar 

  36. Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE (2008) IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol 20:1019–1030

    Article  CAS  PubMed  Google Scholar 

  37. Bourgeois EA, Levescot A, Diem S et al (2011) A natural protective function of invariant NKT cells in a mouse model of innate-cell-driven lung inflammation. Eur J Immunol 41:299–305

    Article  CAS  PubMed  Google Scholar 

  38. Yang Q, Li G, Zhu Y, Liu L, Chen E, Turnquist H, Zhang X, Finn OJ, Chen X, Lu B (2011) IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8(+) T cells. Eur J Immunol 2:201141629

    Google Scholar 

  39. Bonilla WV, Frohlich A, Senn K et al (2012) The alarmin interleukin-33 drives protective antiviral CD8 T cell responses. Science 335:984–989

    Article  CAS  PubMed  Google Scholar 

  40. Vander Lugt MT, Braun TM, Hanash S et al (2013) ST2 as a marker for risk of therapy-resistant graft-versus-host disease and death. N Engl J Med 369:529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reichenbach DK, Schwarze V, Matta BM et al (2015) The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood 125:3183–3192

    Article  CAS  PubMed  Google Scholar 

  42. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    Article  CAS  PubMed  Google Scholar 

  44. Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer CA, Viatte S, Finckh A, Smith DE, Gabay C (2009) Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum 60:738–749

    Article  CAS  PubMed  Google Scholar 

  45. McHedlidze T, Waldner M, Zopf S et al (2013) Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39:357–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hammerich L, Tacke F (2014) Interleukins in chronic liver disease: lessons learned from experimental mouse models. Clin Exp Gastroenterol 7:297–306

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikawa T, Saito Y, Fujiyama Y, Andoh A (2010) Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol 45:999–1007

    Article  CAS  PubMed  Google Scholar 

  48. Sponheim J, Pollheimer J, Olsen T et al (2010) Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am J Pathol 177:2804–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yanaba K, Yoshizaki A, Asano Y, Kadono T, Sato S (2011) Serum IL-33 levels are raised in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. Clin Rheumatol 30:825–830

    Article  PubMed  Google Scholar 

  50. Wagner A, Kohm M, Nordin A, Svenungsson E, Pfeilschifter JM, Radeke HH (2015) Increased serum levels of the IL-33 neutralizing sST2 in limited cutaneous systemic sclerosis. Scand J Immunol 82:269–274

    Article  CAS  PubMed  Google Scholar 

  51. Rankin AL, Mumm JB, Murphy E, Turner S, Yu N, McClanahan TK, Bourne PA, Pierce RH, Kastelein R, Pflanz S (2010) IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol 184:1526–1535

    Article  CAS  PubMed  Google Scholar 

  52. Luzina IG, Kopach P, Lockatell V, Kang PH, Nagarsekar A, Burke AP, Hasday JD, Todd NW, Atamas SP (2013) Interleukin-33 potentiates bleomycin-induced lung injury. Am J Respir Cell Mol Biol 49:999–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li D, Guabiraba R, Besnard AG et al (2014) IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 134(1422–1432), e1411

    Google Scholar 

  54. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  55. Aggarwal BB, Vijayalekshmi RV, Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15:425–430

    Article  CAS  PubMed  Google Scholar 

  56. Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12:584–596

    Article  CAS  PubMed  Google Scholar 

  57. Kundu JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659:15–30

    Article  CAS  PubMed  Google Scholar 

  58. Sun P, Ben Q, Tu S, Dong W, Qi X, Wu Y (2011) Serum interleukin-33 levels in patients with gastric cancer. Dig Dis Sci 4:4

    Google Scholar 

  59. Bergis D, Kassis V, Ranglack A, Koeberle V, Piiper A, Kronenberger B, Zeuzem S, Waidmann O, Radeke HH (2013) High serum levels of the interleukin-33 receptor soluble ST2 as a negative prognostic factor in hepatocellular carcinoma. Transl Oncol 6:311–318

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ishikawa K, Yagi-Nakanishi S, Nakanishi Y, Kondo S, Tsuji A, Endo K, Wakisaka N, Murono S, Yoshizaki T (2014) Expression of interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Auris Nasus Larynx 41:552–557

    Article  PubMed  Google Scholar 

  61. Liu J, Shen JX, Hu JL, Huang WH, Zhang GJ (2014) Significance of interleukin-33 and its related cytokines in patients with breast cancers. Front Immunol 5:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu LA, Fu Y, Zhang DN, Zhang J (2013) Serum IL-33 as a diagnostic and prognostic marker in non-small cell lung cancer. Asian Pac J Cancer Prev 14:2563–2566

    Article  PubMed  Google Scholar 

  63. Chen SF, Nieh S, Jao SW, Wu MZ, Liu CL, Chang YC, Lin YS (2013) The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol 231:180–189

    Article  CAS  PubMed  Google Scholar 

  64. Mager LF, Riether C, Schurch CM et al (2015) IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J Clin Invest 125:2579–2591

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yamada D, Rizvi S, Razumilava N, Bronk SF, Davila JI, Champion MD, Borad MJ, Bezerra JA, Chen X, Gores GJ (2015) IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism. Hepatology 61:1627–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li J, Razumilava N, Gores GJ et al (2014) Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest 124:3241–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim JY, Lim SC, Kim G, Yun HJ, Ahn SG, Choi HS (2015) Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity. Oncogene 34:4928–4938

    Article  CAS  PubMed  Google Scholar 

  68. Jovanovic I, Radosavljevic G, Mitrovic M, Lisnic Juranic V, McKenzie A, Arsenijevic N, Jonjic S, Lukic M (2011) ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma. Eur J Immunol 12:201141417

    Google Scholar 

  69. Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN, Lukic ML (2014) Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 134:1669–1682

    Article  CAS  PubMed  Google Scholar 

  70. Xiao P, Wan X, Cui B, Liu Y, Qiu C, Rong J, Zheng M, Song Y, Chen L, He J et al. (2016) Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncolmmunology 5(1). doi:10.1080/2162402x.2015.1063772

  71. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  72. Zhu Y, Ju S, Chen E, Dai S, Li C, Morel P, Liu L, Zhang X, Lu B (2010) T-bet and eomesodermin are required for T cell-mediated antitumor immune responses. J Immunol 185:3174–3183

    Article  CAS  PubMed  Google Scholar 

  73. Chen LJ, Zheng X, Shen YP et al (2013) Higher numbers of T-bet(+) intratumoral lymphoid cells correlate with better survival in gastric cancer. Cancer Immunol Immunother 62:553–561

    Article  CAS  PubMed  Google Scholar 

  74. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  CAS  PubMed  Google Scholar 

  75. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  CAS  PubMed  Google Scholar 

  76. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  CAS  PubMed  Google Scholar 

  77. Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, Kemmner W (2011) Identification of early molecular markers for breast cancer. Mol Cancer 10:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Noordhuis MG, Fehrmann RS, Wisman GB et al (2011) Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res 17:1317–1330

    Article  CAS  PubMed  Google Scholar 

  79. Wang L, Li H, Liang F, Hong Y, Jiang S, Xiao L (2014) Examining IL-33 expression in the cervix of HPV-infected patients: a preliminary study comparing IL-33 levels in different stages of disease and analyzing its potential association with IFN-gamma. Med Oncol 31:143

    Article  PubMed  Google Scholar 

  80. Katkoori VR, Shanmugam C, Jia X et al (2012) Prognostic significance and gene expression profiles of p53 mutations in microsatellite-stable stage III colorectal adenocarcinomas. PLoS One 7, e30020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Landis MD, Seachrist DD, Abdul-Karim FW, Keri RA (2006) Sustained trophism of the mammary gland is sufficient to accelerate and synchronize development of ErbB2/Neu-induced tumors. Oncogene 25:3325–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsuda H, Komine M, Karakawa M, Etoh T, Tominaga S, Ohtsuki M (2012) Novel splice variants of IL-33: differential expression in normal and transformed cells. J Investig Dermatol 132:2661–2664

    Article  CAS  PubMed  Google Scholar 

  83. Ngoi SM, St Rose MC, Menoret AM, Smith DE, Tovey MG, Adler AJ, Vella AT (2012) Presensitizing with a Toll-like receptor 3 ligand impairs CD8 T-cell effector differentiation and IL-33 responsiveness. Proc Natl Acad Sci U S A 109:10486–10491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao K, Li X, Zhang L, Bai L, Dong W, Gao K, Shi G, Xia X, Wu L, Zhang L (2013) Transgenic expression of IL-33 activates CD8(+) T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Lett 335:463–471

    Article  CAS  PubMed  Google Scholar 

  85. Villarreal DO, Wise MC, Walters JN, Reuschel EL, Choi MJ, Obeng-Adjei N, Yan J, Morrow MP, Weiner DB (2014) Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Res 74:1789–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao X, Wang X, Yang Q et al (2015) Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol 194:438–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dominguez D, Ye C, Geng Z, Chen S, Qin L, Fan J, Long A, Zhang B (2015) Induction of robust antitumor immunity by exogenous interleukin-33. J Immunol 194 (1 Supplement) 69.2

  88. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  CAS  PubMed  Google Scholar 

  90. McAllister F, Bailey JM, Alsina J et al (2014) Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25:621–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523:231–235

    Article  CAS  PubMed  Google Scholar 

  92. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  CAS  PubMed  Google Scholar 

  96. Andtbacka RH, Kaufman HL, Collichio F et al (2015) Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33:2780–2788

    Article  CAS  PubMed  Google Scholar 

  97. Kerkar SP, Muranski P, Kaiser A et al (2010) Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 70:6725–6734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was mainly supported by the National Institutes of Health through Grant Numbers R21CA167229 (BL), Roswell Park Cancer Institute/University of Pittsburgh Cancer Institute Ovarian Cancer Specialized Programs of Research Excellence Grants P50CA159981 (to BL), and National Natural Science Foundation of China Grants 31428005 (to BL and JJ). QW is supported by grants from National Natural Science Foundation of China (81373115) and National Program on Key Basic Research Project (2014CB542101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binfeng Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Yang, M. & Wang, Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med 94, 535–543 (2016). https://doi.org/10.1007/s00109-016-1397-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1397-0

Keywords

Navigation