Skip to main content
Log in

RAP1-GTPase signaling and platelet function

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Platelets are critical for hemostasis, i.e., the body’s ability to prevent blood loss at sites of vascular injury. They patrol the vasculature in a quiescent, non-adhesive state for approximately 10 days, after which they are removed from circulation by phagocytic cells of the reticulo-endothelial system. At sites of vascular injury, they promptly shift to an activated, adhesive state required for the formation of a hemostatic plug. The small GTPase RAP1 is a critical regulator of platelet adhesiveness. Our recent studies demonstrate that the antagonistic balance between the RAP1 regulators, CalDAG-GEFI and RASA3, is critical for the modulation of platelet adhesiveness, both in circulation and at sites of vascular injury. The RAP1 activator CalDAG-GEFI responds to small changes in the cytoplasmic calcium concentration and thus provides sensitivity and speed to the activation response, essential for efficient platelet adhesion under conditions of hemodynamic shear stress. The RAP1 inhibitor RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI-dependent RAP1 activation. Upon cellular stimulation, it is turned off by P2Y12 signaling to enable sustained RAP1 activation, required for the formation of a stable hemostatic plug. This review will summarize important studies that elucidated the signaling pathways that control RAP1 activation in platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ruggeri ZM (2009) Platelet adhesion under flow. Microcirculation 16:58–83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Stegner D, Nieswandt B (2010) Platelet receptor signaling in thrombus formation. J Mol Med 89:109–121

    Article  PubMed  Google Scholar 

  3. Kim C, Ye F, Ginsberg MH (2011) Regulation of integrin activation. Annu Rev Cell Dev Biol 27:321–345

    Article  PubMed  CAS  Google Scholar 

  4. Wei AH, Schoenwaelder SM, Andrews RK, Jackson SP (2009) New insights into the haemostatic function of platelets. Br J Haematol 147:415–430

    Article  PubMed  CAS  Google Scholar 

  5. Jackson SP (2011) Arterial thrombosis—insidious, unpredictable and deadly. Nat Med 17:1423–1436

    Article  PubMed  CAS  Google Scholar 

  6. Cattaneo M (2015) P2Y12 receptors: structure and function. J Thromb Haemost 13(Suppl 1):S10–S16

    Article  PubMed  CAS  Google Scholar 

  7. Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, Geiger J, Sickmann A, Zahedi RP (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120:e73–e82

    Article  PubMed  CAS  Google Scholar 

  8. Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JWM, Zahedi RP (2014) What can proteomics tell us about platelets? Circ Res 114:1204–1219

    Article  PubMed  CAS  Google Scholar 

  9. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  PubMed  CAS  Google Scholar 

  10. Franke B, Akkerman JW, Bos JL (1997) Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J 16:252–259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Guidetti GF, Torti M (2012) The small GTPase Rap1b: a bidirectional regulator of platelet adhesion receptors. J Signal Transduct 2012:412089

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nagata K, Nozawa Y (1995) A low M(r) GTP-binding protein, Rap1, in human platelets: localization, translocation and phosphorylation by cyclic AMP-dependent protein kinase. Br J Haematol 90:180–186

    Article  PubMed  CAS  Google Scholar 

  13. Berger G, Quarck R, Tenza D, Levy-Toledano S, de Gunzburg J, Cramer EM (1994) Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes. Br J Haematol 88:372–382

    Article  PubMed  CAS  Google Scholar 

  14. Bertoni A, Tadokoro S, Eto K, Pampori N, Parise LV, White GC, Shattil SJ (2002) Relationships between Rap1b, affinity modulation of integrin alpha IIbbeta 3, and the actin cytoskeleton. J Biol Chem 277:25715–25721

    Article  PubMed  CAS  Google Scholar 

  15. Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC (2005) Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 115:680–687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Cifuni SM, Wagner DD, Bergmeier W (2008) CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 112:1696–1703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Bernardi B, Guidetti GF, Campus F, Crittenden JR, Graybiel AM, Balduini C, Torti M (2006) The small GTPase Rap1b regulates the cross talk between platelet integrin alpha2beta1 and integrin alphaIIbbeta3. Blood 107:2728–2735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zhang G, Xiang B, Ye S, Chrzanowska-Wodnicka M, Morris AJ, Gartner TK, Whiteheart SW, White GC, Smyth SS, Li Z (2011) Distinct roles for Rap1b protein in platelet secretion and integrin αIIbβ3 outside-in signaling. J Biol Chem 286:39466–39477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Stefanini L, Boulaftali Y, Ouellette TD, Holinstat M, Désiré L, Leblond B, Andre P, Conley PB, Bergmeier W (2012) Rap1-Rac1 circuits potentiate platelet activation. Arterioscler Thromb Vasc Biol 32:434–441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Stefanini L, Roden RC, Bergmeier W (2009) CalDAG-GEFI is at the nexus of calcium-dependent platelet activation. Blood 114:2506–2514

    Article  PubMed  CAS  Google Scholar 

  21. Stolla M, Stefanini L, Roden RC, Chavez M, Hirsch J, Greene T, Ouellette TD, Maloney SF, Diamond SL, Poncz M et al (2011) The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy. Blood 117:1005–1013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Franke B, van Triest M, de Bruijn KM, van Willigen G, Nieuwenhuis HK, Negrier C, Akkerman JW, Bos JL (2000) Sequential regulation of the small GTPase Rap1 in human platelets. Mol Cell Biol 20:779–785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF (2002) Activation of Rap1B by G(i) family members in platelets. J Biol Chem 277:23382–23390

    Article  PubMed  CAS  Google Scholar 

  24. Lova P, Paganini S, Sinigaglia F, Balduini C, Torti M (2002) A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 277:12009–12015

    Article  PubMed  CAS  Google Scholar 

  25. Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, Balduini C, Torti M (2003) A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 278:131–138

    Article  PubMed  CAS  Google Scholar 

  26. Eto K, Murphy R, Kerrigan SW, Bertoni A, Stuhlmann H, Nakano T, Leavitt AD, Shattil SJ (2002) Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci U S A 99:12819–12824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Crittenden JR, Bergmeier W, Zhang Y, Piffath CL, Liang Y, Wagner DD, Housman DE, Graybiel AM (2004) CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 10:982–986

    Article  PubMed  CAS  Google Scholar 

  28. Canault M, Ghalloussi D, Grosdidier C, Guinier M, Perret C, Chelghoum N, Germain M, Raslova H, Peiretti F, Morange PE et al (2014) Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med 211:1349–1362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Zeiler M, Moser M, Mann M (2014) Copy number analysis of the murine platelet proteome spanning the complete abundance range. Mol Cell Proteomics 13:3435–3445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Kawasaki H, Springett GM, Toki S, Canales JJ, Harlan P, Blumenstiel JP, Chen EJ, Bany IA, Mochizuki N, Ashbacher A et al (1998) A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc Natl Acad Sci U S A 95:13278–13283

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J (2013) Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. eLife 2:e00813

    Article  PubMed  PubMed Central  Google Scholar 

  32. Irie K, Masuda A, Shindo M, Nakagawa Y, Ohigashi H (2004) Tumor promoter binding of the protein kinase C C1 homology domain peptides of RasGRPs, chimaerins, and Unc13s. Bioorg Med Chem 12:4575–4583

    Article  PubMed  CAS  Google Scholar 

  33. Johnson JE, Goulding RE, Ding Z, Partovi A, Anthony KV, Beaulieu N, Tazmini G, Cornell RB, Kay RJ (2007) Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs. Biochem J 406:223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Amirkhosravi A, Boulaftali Y, Robles-Carrillo L, Meyer T, McKenzie SE, Francis JL, Bergmeier W (2014) CalDAG-GEFI deficiency protects mice from FcγRIIa-mediated thrombotic thrombocytopenia induced by CD40L and β2GPI immune complexes. J Thromb Haemost 12:2113–2119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118:e101–e111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, Ma L, Fortina P, Kunapuli S, Holinstat M et al (2014) Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 123:e37–e45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Cullen PJ, Patel Y, Kakkar VV, Irvine RF, Authi KS (1994) Specific binding sites for inositol 1,3,4,5-tetrakisphosphate are located predominantly in the plasma membranes of human platelets. Biochem J 298(Pt 3):739–742

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Stefanini L, Paul DS, Robledo RF, Chan ER, Getz TM, Campbell RA, Kechele DO, Casari C, Piatt R, Caron KM et al (2015) RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J Clin Invest 125:1419–1432

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yarwood S, Bouyoucef-Cherchalli D, Cullen PJ, Kupzig S (2006) The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling. Biochem Soc Trans 34:846–850

    Article  PubMed  CAS  Google Scholar 

  40. Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irvine RF (1995) Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 376:527–530

    Article  PubMed  CAS  Google Scholar 

  41. Kupzig S, Bouyoucef-Cherchalli D, Yarwood S, Sessions R, Cullen PJ (2009) The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb. Mol Cell Biol 29:3929–3940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sot B, Kötting C, Deaconescu D, Suveyzdis Y, Gerwert K, Wittinghofer A (2010) Unravelling the mechanism of dual-specificity GAPs. EMBO J 29:1205–1214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Lockyer PJ, Bottomley JR, Reynolds JS, McNulty TJ, Venkateswarlu K, Potter BV, Dempsey CE, Cullen PJ (1997) Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. Curr Biol 7:1007–1010

    Article  PubMed  CAS  Google Scholar 

  44. Cozier GE, Lockyer PJ, Reynolds JS, Kupzig S, Bottomley JR, Millard TH, Banting G, Cullen PJ (2000) GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem 275:28261–28268

    PubMed  CAS  Google Scholar 

  45. Cozier GE, Bouyoucef D, Cullen PJ (2003) Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain. J Biol Chem 278:39489–39496

    Article  PubMed  CAS  Google Scholar 

  46. Cullen PJ (1998) Bridging the GAP in inositol 1,3,4,5-tetrakisphosphate signalling. Biochim Biophys Acta 1436:35–47

    Article  PubMed  CAS  Google Scholar 

  47. Wang J, Richards DA (2012) Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol Open 1:857–862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Iwashita S, Kobayashi M, Kubo Y, Hinohara Y, Sezaki M, Nakamura K, Suzuki-Migishima R, Yokoyama M, Sato S, Fukuda M et al (2006) Versatile roles of R-Ras GAP in neurite formation of PC12 cells and embryonic vascular development. J Biol Chem 282:3413–3417

    Article  PubMed  Google Scholar 

  49. Boulaftali Y, Hess PR, Kahn ML, Bergmeier W (2014) Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ Res 114:1174–1184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Molina-Ortiz P, Polizzi S, Ramery E, Gayral S, Delierneux C, Oury C, Iwashita S, Schurmans S (2014) Rasa3 controls megakaryocyte Rap1 activation, integrin signaling and differentiation into proplatelet. PLoS Genet 10:e1004420

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association (14EIA18910004) and NIH grants R01 HL121650 and P01 HL120846.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bergmeier.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanini, L., Bergmeier, W. RAP1-GTPase signaling and platelet function. J Mol Med 94, 13–19 (2016). https://doi.org/10.1007/s00109-015-1346-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1346-3

Keywords

Navigation