Skip to main content

Advertisement

Log in

The miRNA23b-regulated signaling network as a key to cancer development—implications for translational research and therapeutics

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

A growing body of evidence indicates that microRNA23b (miR23b) is pleiotropic—it plays important roles in regulating physiological functions of cells, in regulating differentiation of cells and in regulating cellular immune responses. Our review of the literature showed that dysregulation of miR23b expression is implicated in the disruption of these cellular mechanisms and development of diseases such as cancer. MiR23b dysregulation appears to do this by modulating the expression level of candidate gene products involved in a network of signaling pathways including TGF-beta and Notch pathways that govern malignant properties of cancer cells such as motility and invasiveness. More recently, miR23b regulation of gene expression has also been associated with cancer stem cells and chemoresistance. Our review covers miR23b’s role in immunity, endothelial function, differentiation, and cancer as well as its potential for translation into future cancer diagnostics and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chalfie M, Horvitz HR, Sulston JE (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24(1):59–69

    Article  PubMed  CAS  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  4. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296

    Article  PubMed  CAS  Google Scholar 

  5. Johnson SM, Lin SY, Slack FJ (2003) The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 259(2):364–379

    Article  PubMed  CAS  Google Scholar 

  6. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574

    Article  PubMed  CAS  Google Scholar 

  7. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680

    Article  PubMed  CAS  Google Scholar 

  8. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596

    Article  PubMed  CAS  Google Scholar 

  9. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S et al (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112(3):317–327

    Article  PubMed  CAS  Google Scholar 

  11. Kimura H, Kawasaki H, Taira K (2004) Mouse microRNA-23b regulates expression of Hes1 gene in P19 cells. Nucleic Acids Symp Ser (Oxf) 48:213–214

    Article  Google Scholar 

  12. Li X, Li XQ, Zhang JH, Chen WX, Liu J, Guo TN, et al. (2008) [Differential expression profiles of MicroRNA during the development of human cord blood CD34(+)CD38(−) cells to CD34(+)CD38(+) cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi;16(3):589–92

  13. Hildebrand J, Rutze M, Walz N, Gallinat S, Wenck H, Deppert W et al (2011) A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 131(1):20–29

    Article  PubMed  CAS  Google Scholar 

  14. Rogler CE, Levoci L, Ader T, Massimi A, Tchaikovskaya T, Norel R et al (2009) MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 50(2):575–584

    Article  PubMed  CAS  Google Scholar 

  15. Yuan B, Dong R, Shi D, Zhou Y, Zhao Y, Miao M et al (2011) Down-regulation of miR-23b may contribute to activation of the TGF-beta1/Smad3 signalling pathway during the termination stage of liver regeneration. FEBS Lett 585(6):927–934

    Article  PubMed  CAS  Google Scholar 

  16. Leone V, D’Angelo D, Pallante P, Croce CM, Fusco A (2012) Thyrotropin regulates thyroid cell proliferation by up-regulating miR-23b and miR-29b that target SMAD3. J Clin Endocrinol Metab 97(9):3292–3301

    Article  PubMed  CAS  Google Scholar 

  17. Dmitriev P, Barat A, Polesskaya A, O’Connell MJ, Robert T, Dessen P et al (2013) Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes. BMC Genomics 14:265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ham O, Song BW, Lee SY, Choi E, Cha MJ, Lee CY et al (2012) The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 33(18):4500–4507

    Article  PubMed  CAS  Google Scholar 

  19. Lin K, Hsu PP, Chen BP, Yuan S, Usami S, Shyy JY et al (2000) Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A 97(17):9385–9389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K et al (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071

    Article  PubMed  CAS  Google Scholar 

  21. Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S et al (2010) Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci U S A 107(7):3234–3239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. He J, Li Y, Yang X, He X, Zhang H, Zhang L (2012) The feedback regulation of PI3K-miR-19a, and MAPK-miR-23b/27b in endothelial cells under shear stress. Molecules 18(1):1–13

    Article  PubMed  CAS  Google Scholar 

  23. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14(3):249–256

    Article  PubMed  CAS  Google Scholar 

  24. Di Stefano V, Zaccagnini G, Capogrossi MC, Martelli F (2011) microRNAs as peripheral blood biomarkers of cardiovascular disease. Vascul Pharmacol 55(4):111–118

    Article  PubMed  Google Scholar 

  25. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J et al (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666

    Article  PubMed  Google Scholar 

  26. Wei C, Henderson H, Spradley C, Li L, Kim IK, Kumar S et al (2013) Circulating miRNAs as potential marker for pulmonary hypertension. PLoS One 8(5):e64396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10(2):111–122

    Article  PubMed  Google Scholar 

  28. Zheng J, Jiang HY, Li J, Tang HC, Zhang XM, Wang XR et al (2012) MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-kappaB signalling pathways. Allergy 67(3):362–370

    Article  PubMed  CAS  Google Scholar 

  29. Chen XM, O’Hara SP, Nelson JB, Splinter PL, Small AJ, Tietz PS et al (2005) Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J Immunol 175(11):7447–7456

    Article  PubMed  CAS  Google Scholar 

  30. Zhou R, Hu G, Gong AY, Chen XM (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38(10):3222–3232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Zhou R, Hu G, Liu J, Gong AY, Drescher KM, Chen XM (2009) NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 5(12):e1000681

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y et al (2012) The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med 18(7):1077–1086

    Article  PubMed  CAS  Google Scholar 

  33. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  PubMed  CAS  Google Scholar 

  35. Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P et al (2007) A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosom Cancer 46(4):336–347

    Article  PubMed  CAS  Google Scholar 

  36. Kowalewska M, Bakula-Zalewska E, Chechlinska M, Goryca K, Nasierowska-Guttmejer A, Danska-Bidzinska A et al (2013) microRNAs in uterine sarcomas and mixed epithelial-mesenchymal uterine tumors: a preliminary report. Tumour Biol 34(4):2153–2160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Castilla MA, Moreno-Bueno G, Romero-Perez L, Van De Vijver K, Biscuola M, Lopez-Garcia MA et al (2011) Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 223(1):72–80

    Article  PubMed  CAS  Google Scholar 

  38. Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S et al (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16(3):206–216

    PubMed  CAS  Google Scholar 

  39. Sikand K, Slane SD, Shukla GC (2009) Intrinsic expression of host genes and intronic miRNAs in prostate carcinoma cells. Cancer Cell Int 9:21

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P (2009) The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 69(8):3356–3363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL et al (2012) The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 72(10):1093–1103

    Article  PubMed  CAS  Google Scholar 

  42. Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL (2012) The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One 7(12):e52106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. He HC, Zhu JG, Chen XB, Chen SM, Han ZD, Dai QS et al (2012) MicroRNA-23b downregulates peroxiredoxin III in human prostate cancer. FEBS Lett 586(16):2451–2458

    Article  PubMed  CAS  Google Scholar 

  44. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Tian L, Fang YX, Xue JL, Chen JZ (2013) Four microRNAs promote prostate cell proliferation with regulation of PTEN and its downstream signals in vitro. PLoS One 8(9):e75885

    Article  PubMed  PubMed Central  Google Scholar 

  46. Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS et al (2012) miR-23b represses proto-oncogene SRC kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res 72(24):6435–6446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, Alahari SK (2013) Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-alpha in breast cancer. Cancer Res 73(9):2884–2896

    Article  PubMed  CAS  Google Scholar 

  48. Wu Q, Wang C, Lu Z, Guo L, Ge Q (2012) Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta 413(13–14):1058–1065

    Article  PubMed  CAS  Google Scholar 

  49. Paris O, Ferraro L, Grober OM, Ravo M, De Filippo MR, Giurato G et al (2012) Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 31(38):4196–4206

    Article  PubMed  CAS  Google Scholar 

  50. Pellegrino L, Stebbing J, Braga VM, Frampton AE, Jacob J, Buluwela L et al (2013) miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res 41(10):5400–5412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Chen L, Han L, Zhang K, Shi Z, Zhang J, Zhang A et al (2012) VHL regulates the effects of miR-23b on glioma survival and invasion via suppression of HIF-1alpha/VEGF and beta-catenin/Tcf-4 signaling. Neuro Oncol 14(8):1026–1036

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Loftus JC, Ross JT, Paquette KM, Paulino VM, Nasser S, Yang Z et al (2012) miRNA expression profiling in migrating glioblastoma cells: regulation of cell migration and invasion by miR-23b via targeting of Pyk2. PLoS One 7(6):e39818

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Hao Y, Yang J, Zhou Y, Li J, Yin S et al (2011) Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun 2:554

    Article  PubMed  Google Scholar 

  54. Slaby O, Sachlova M, Brezkova V, Hezova R, Kovarikova A, Bischofova S et al (2013) Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer 65(2):247–254

    Article  PubMed  CAS  Google Scholar 

  55. Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M et al (2011) miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res 9(7):824–833

    Article  PubMed  CAS  Google Scholar 

  56. Wu X, Ajani JA, Gu J, Chang DW, Tan W, Hildebrandt MA et al (2013) MicroRNA expression signatures during malignant progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer Prev Res (Phila) 6(3):196–205

    Article  CAS  Google Scholar 

  57. Zhao BS, Liu SG, Wang TY, Ji YH, Qi B, Tao YP et al (2013) Screening of microRNA in patients with esophageal cancer at same tumor node metastasis stage with different prognoses. Asian Pac J Cancer Prev 14(1):139–143

    Article  PubMed  Google Scholar 

  58. Zaman MS, Thamminana S, Shahryari V, Chiyomaru T, Deng G, Saini S et al (2012) Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One 7(11):e50203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Liu Y, Borchert GL, Donald SP, Diwan BA, Anver M, Phang JM (2009) Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res 69(16):6414–6422

    Article  PubMed  CAS  Google Scholar 

  60. Liu W, Zabirnyk O, Wang H, Shiao YH, Nickerson ML, Khalil S et al (2010) miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 29(35):4914–4924

    Article  PubMed  CAS  Google Scholar 

  61. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW et al (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109(23):8983–8988

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Majid S, Dar AA, Saini S, Deng G, Chang I, Greene K et al (2013) MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS One 8(7):e67686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    Article  PubMed  CAS  Google Scholar 

  64. Bai L, Wei L, Wang J, Li X, He P (2006) Extended effects of human papillomavirus 16 E6-specific short hairpin RNA on cervical carcinoma cells. Int J Gynecol Cancer 16(2):718–729

    Article  PubMed  CAS  Google Scholar 

  65. Au Yeung CL, Tsang TY, Yau PL, Kwok TT (2011) Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 30(21):2401–2410

    Article  PubMed  CAS  Google Scholar 

  66. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH (2008) Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34(2):122–136

    Article  PubMed  CAS  Google Scholar 

  67. Salvi A, Sabelli C, Moncini S, Venturin M, Arici B, Riva P et al (2009) MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J 276(11):2966–2982

    Article  PubMed  CAS  Google Scholar 

  68. Philippidou D, Schmitt M, Moser D, Margue C, Nazarov PV, Muller A et al (2010) Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res 70(10):4163–4173

    Article  PubMed  CAS  Google Scholar 

  69. Li B, Sun M, Gao F, Liu W, Yang Y, Liu H et al (2013) Up-regulated expression of miR-23a/b targeted the pro-apoptotic Fas in radiation-induced thymic lymphoma. Cell Physiol Biochem 32(6):1729–1740

    Article  PubMed  CAS  Google Scholar 

  70. Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L et al (2013) MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 145(5):1133–43 e12

    Article  PubMed  CAS  Google Scholar 

  71. DeSano JT, Xu L (2009) MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J 11(4):682–692

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Takahashi H, Ishii H, Nishida N, Takemasa I, Mizushima T, Ikeda M et al (2011) Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol 18(4):1166–1174

    Article  PubMed  Google Scholar 

  74. Geng J, Luo H, Pu Y, Zhou Z, Wu X, Xu W et al (2012) Methylation mediated silencing of miR-23b expression and its role in glioma stem cells. Neurosci Lett 528(2):185–189

    Article  PubMed  CAS  Google Scholar 

  75. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Chang B, Liu G, Xue F, Rosen DG, Xiao L, Wang X et al (2009) ALDH1 expression correlates with favorable prognosis in ovarian cancers. Mod Pathol 22(6):817–823

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69(8):3382–3389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ et al (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6(7):1146–1153

    Article  PubMed  CAS  Google Scholar 

  79. van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70(12):5163–5173

    Article  PubMed  Google Scholar 

  80. Wakamatsu Y, Sakamoto N, Oo HZ, Naito Y, Uraoka N, Anami K et al (2012) Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int 62(2):112–119

    Article  PubMed  Google Scholar 

  81. Park YT, Jeong JY, Lee MJ, Kim KI, Kim TH, Kwon YD et al (2013) MicroRNAs overexpressed in ovarian ALDH1-positive cells are associated with chemoresistance. J Ovarian Res 6(1):18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J et al (2013) Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials 34(29):7191–7203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge support from the Delaware Bioscience Center for Advanced Technology (CAT) grant and the Cancer B Ware Foundation support. We would also like to extend our gratitude to the Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute. We thank Dr. Nicholas J. Petrelli sincerely for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce M. Boman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, V., Fields, J. & Boman, B.M. The miRNA23b-regulated signaling network as a key to cancer development—implications for translational research and therapeutics. J Mol Med 92, 1129–1138 (2014). https://doi.org/10.1007/s00109-014-1208-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1208-4

Keywords

Navigation