Skip to main content
Log in

Specific targeting of neurotoxic side effects and pharmacological profile of the novel cancer stem cell drug salinomycin in mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Salinomycin is a polyether antibiotic which effectively eliminates a variety of cancer stem cells and chemotherapy-resistant tumor cells in vitro and in vivo. One important caveat for its clinical application is the paucity of preclinical pharmacological and safety data. In the present study, we thus aimed to elucidate pharmacokinetic properties of salinomycin and to assess the side effect profile of chronic treatment with this compound in C57Bl/6 mice. In addition, we tested whether neurotoxic side effects can be prevented by interference with the intracellular calcium homeostasis. We observed that salinomycin has a narrow therapeutic index; however, a dose of 5 mg/kg body weight was well tolerated, and analysis of blood parameters as well as organ histology of liver, kidney, skeletal muscle, and heart showed no abnormalities after daily salinomycin injection for 4 weeks. Pharmacokinetic evaluation revealed low micromolar peak concentrations and an almost complete systemic elimination within 5 h after injection. In contrast to low systemic toxicity, typical signs of a sensory polyneuropathy with mechanical and cold allodynia, distinct gait alterations, decreased sensory nerve action potential amplitudes, and loss of myelinated fibers in the sciatic nerve were observed in salinomycin-treated animals. Inhibition of the mitochondrial Na+/Ca2+ exchanger partially prevented the development of salinomycin-induced neuropathy in vivo, an approach which did not reduce salinomycin’s antineoplastic efficacy in vitro. Taken together, this study establishes a framework of pharmacokinetic data for future preclinical trials and safety data for translational trials. Furthermore, we established a strategy to reduce salinomycin’s off-target neurotoxic effects.

Key message

  • Salinomycin has a narrow therapeutic index; a dose of 5 mg/kg is tolerated in mice.

  • Mice treated with salinomycin develop a painful sensory polyneuropathy.

  • An optimized protocol was established to measure salinomycin in serum samples.

  • Inhibition of Na+/Ca2+ exchangers prevents salinomycin-induced neuropathy.

  • Blocking mitochondrial Na+/Ca2+ exchangers does not impair antineoplastic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitani M, Yamanishi T, Miyazaki Y (1975) Salinomycin: a new monovalent cation ionophore. Biochem Biophys Res Commun 66:1231–1236

    Article  CAS  PubMed  Google Scholar 

  2. Henri J, Maurice R, Postollec G, Dubreil-Cheneau E, Roudaut B, Laurentie M, Sanders P (2012) Comparison of the oral bioavailability and tissue disposition of monensin and salinomycin in chickens and turkeys. J Vet Pharmacol Ther 35:73–81

    Article  CAS  PubMed  Google Scholar 

  3. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  CAS  PubMed  Google Scholar 

  4. Naujokat C, Steinhart R (2012) Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 950658. doi:10.1155/2012/950658

  5. Koo KH, Kim H, Bae YK, Kim K, Park BK, Lee CH, Kim YN (2013) Salinomycin induces cell death via inactivation of Stat3 and downregulation of Skp2. Cell Death Dis 4:e693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. van der Linde-Sipman JS, van den Ingh TS, van Nes JJ, Verhagen H, Kersten JG, Beynen AC, Plekkringa R (1999) Salinomycin-induced polyneuropathy in cats: morphologic and epidemiologic data. Vet Pathol 36:152–156

    Article  PubMed  Google Scholar 

  7. Novilla MN, Owen NV, Todd GC (1994) The comparative toxicology of narasin in laboratory animals. Vet Hum Toxicol 36:318–323

    CAS  PubMed  Google Scholar 

  8. Story P, Doube A (2004) A case of human poisoning by salinomycin, an agricultural antibiotic. N Z Med J 117:U799

    PubMed  Google Scholar 

  9. Li Y, Fang J, Wu S, Ma K, Li H, Yan X, Dong F (2010) Identification and quantification of salinomycin in intoxicated human plasma by liquid chromatography-electrospray tandem mass spectrometry. Anal Bioanal Chem 398:955–961

    Article  CAS  PubMed  Google Scholar 

  10. Boehmerle W, Endres M (2011) Salinomycin induces calpain and cytochrome c-mediated neuronal cell death. Cell Death Dis 2:e168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhang Y, Huo M, Zhou J, Xie S (2010) PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Prog Biomed 99:306–314

    Article  Google Scholar 

  12. Huehnchen P, Boehmerle W, Endres M (2013) Assessment of paclitaxel induced sensory polyneuropathy with “catwalk” automated gait analysis in mice. PLoS One 8:e76772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Allchorne AJ, Broom DC, Woolf CJ (2005) Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats. Mol pain 1:36

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bannon AW, Malmberg AB (2007) Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci/editorial board, Jacqueline N Crawley [et al.] Chapter 8: Unit 8 9. doi:10.1002/0471142301.ns0809s41

  15. Xing H, Chen M, Ling J, Tan W, Gu JG (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci: Off J Soc Neurosci 27:13680–13690

    Article  CAS  Google Scholar 

  16. More HL, Chen J, Gibson E, Donelan JM, Beg MF (2011) A semi-automated method for identifying and measuring myelinated nerve fibers in scanning electron microscope images. J Neurosci Methods 201:149–158

    Article  PubMed  Google Scholar 

  17. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 1:94–99

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ojo OO, Bhadauria S, Rath SK (2013) Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice. PLoS One 8:e69086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Scherzed A, Hackenberg S, Froelich K, Rak K, Technau A, Radeloff A, Noth U, Koehler C, Hagen R, Kleinsasser N (2013) Effects of salinomycin on human bone marrow-derived mesenchymal stem cells in vitro. Toxicol Lett 218:207–214

    Article  CAS  PubMed  Google Scholar 

  20. Bastianello SS, McGregor HL, Penrith ML, Fourie N (1996) A chronic cardiomyopathy in feedlot cattle attributed to toxic levels of salinomycin in the feed. J S Afr Vet Assoc 67:38–41

    CAS  PubMed  Google Scholar 

  21. Authier N, Balayssac D, Marchand F, Ling B, Zangarelli A, Descoeur J, Coudore F, Bourinet E, Eschalier A (2009) Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurother: J Am Soc Exp Neurother 6:620–629

    Article  CAS  Google Scholar 

  22. Leandri M, Ghignotti M, Emionite L, Leandri S, Cilli M (2012) Electrophysiological features of the mouse tail nerves and their changes in chemotherapy induced peripheral neuropathy (CIPN). J Neurosci Methods 209:403–409

    Article  PubMed  Google Scholar 

  23. Wang MS, Davis AA, Culver DG, Glass JD (2002) WldS mice are resistant to paclitaxel (Taxol) neuropathy. Ann Neurol 52:442–447

    Article  PubMed  Google Scholar 

  24. Caspani O, Zurborg S, Labuz D, Heppenstall PA (2009) The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 4:e7383

    Article  PubMed Central  PubMed  Google Scholar 

  25. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci: Off J Soc Neurosci 28:1046–1057

    Article  CAS  Google Scholar 

  26. Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Wang YH, Ge HY, Arendt-Nielsen L, Wang R, Yue SW (2008) A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci Lett 432:222–227

    Article  CAS  PubMed  Google Scholar 

  28. Oie S, Tozer TN (1979) Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci 68:1203–1205

    Article  CAS  PubMed  Google Scholar 

  29. Aleman M, Magdesian KG, Peterson TS, Galey FD (2007) Salinomycin toxicosis in horses. J Am Vet Med Assoc 230:1822–1826

    Article  CAS  PubMed  Google Scholar 

  30. Su L, Wang C, Yu YH, Ren YY, Xie KL, Wang GL (2011) Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain. BMC Neurosci 12:120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD (2010) TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150:340–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452

    Article  CAS  PubMed  Google Scholar 

  33. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J: Off Publ Fed Am Soc Exp Biol 22:659–661

    Article  CAS  Google Scholar 

  35. Fahim M, del Valle G, Pressman BC (1986) Comparison of the effects of the ionophore salinomycin and adrenaline on the haemodynamics and work efficiency of the dog heart. Cardiovasc Res 20:145–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Catherine Aubel for the thoughtful text editing, Heather L. More for the Matlab routine used to perform semi-automatic nerve morphometry, and Petra Loge for the excellent technical assistance. We would also like to thank Thomas Kolrep for his commitment regarding the mass spectrometric experiments. The research leading to these results has received funding from the federal ministry of education and research via the grant center for stroke research Berlin (01 EO 0801), the Volkswagen foundation (Lichtenberg program to Matthias Endres), and the Deutsche Forschungsgemeinschaft DFG (NeuroCure, BioSupraMol). Wolfgang Boehmerle is participant in the Charité Clinical Scientist Program funded by the Charité Universitätsmedizin Berlin and the Berlin Institute of Health.

Disclosure

There are no known conflicts of interest with respect to the execution of the experiments or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Boehmerle.

Additional information

Wolfgang Boehmerle and Hanna Muenzfeld contributed equally to the present manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 34 kb)

ESM 2

(DOC 33 kb)

Supplemental Figure S1

Assessment of heat allodynia. Response latency in the hot plate test (50 °C) was comparable in all four experimental groups (GIF 27 kb)

High Resolution Image (TIFF 66 kb)

Supplemental Figure S2

MS/MS spectrum of deprotonated salinomycin. The fragment ions observed can be deduced from the fragmentation pattern suggested for sodiated salinomycin (GIF 47 kb)

High Resolution Image (TIFF 7,940 kb)

Supplemental Figure S3

SAL calibration standards with linear regression. Concentration values are in nanomole. r = 9.998847; r 2 = 0.997695 (GIF 9 kb)

High Resolution Image (TIFF 1,223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boehmerle, W., Muenzfeld, H., Springer, A. et al. Specific targeting of neurotoxic side effects and pharmacological profile of the novel cancer stem cell drug salinomycin in mice. J Mol Med 92, 889–900 (2014). https://doi.org/10.1007/s00109-014-1155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1155-0

Keywords

Navigation