Skip to main content
Log in

Inhibition of aquaporin-1 dependent angiogenesis impairs tumour growth in a mouse model of melanoma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Prohibiting angiogenesis is an important therapeutic approach for fighting cancer and other angiogenic related diseases. Research focused on proteins that regulate abnormal angiogenesis has attracted intense interest in both academia and industry. Such proteins are able to target several angiogenic factors concurrently, thereby increasing the possibility of therapeutic success. Aquaporin-1 (AQP1) is a water channel membrane protein that promotes tumour angiogenesis by allowing faster endothelial cell migration. In this study we test the hypothesis that AQP1 inhibition impairs tumour growth in a mouse model of melanoma. After validating the inhibitor efficacy of two different AQP1 specific siRNAs in cell cultures, RNA interference experiments were performed by intratumoural injections of AQP1 siRNAs in mice. After 6 days of treatment, AQP1 siRNA treated tumours showed a 75 % reduction in volume when compared to controls. AQP1 protein level, in AQP1 knockdown tumours, was around 75 % that of the controls and was associated with a significant 40 % reduced expression of the endothelial marker, Factor VIII. Immunofluorescence analysis of AQP1 siRNA treated tumours showed a significantly lower microvessel density. Time course experiments demontrated that repeated injections of AQP1 siRNA over time are effective in sustaining the inhibition of tumour growth. Finally, we have confirmed the role of AQP1 in sustaining an active endothelium during angiogenesis and we have shown that AQP1 reduction causes an increase in VEGF levels. In conclusion, this study validates AQP1 as a pro-angiogenic protein, relevant for the therapy of cancer and other angiogenic-related diseases such as psoriasis, endometriosis, arthritis and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP et al (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111

    Article  PubMed  CAS  Google Scholar 

  2. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  PubMed  CAS  Google Scholar 

  3. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  PubMed  CAS  Google Scholar 

  4. Endo M, Jain RK, Witwer B, Brown D (1999) Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc Res 58:89–98

    Article  PubMed  CAS  Google Scholar 

  5. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  PubMed  CAS  Google Scholar 

  6. Vacca A, Frigeri A, Ribatti D, Nicchia GP, Nico B, Ria R, Svelto M, Dammacco F (2001) Microvessel overexpression of aquaporin 1 parallels bone marrow angiogenesis in patients with active multiple myeloma. Br J Haematol 113:415–421

    Article  PubMed  CAS  Google Scholar 

  7. Vacca A, Ribatti D, Roccaro AM, Frigeri A, Dammacco F (2001) Bone marrow angiogenesis in patients with active multiple myeloma. Semin Oncol 28:543–550

    Article  PubMed  CAS  Google Scholar 

  8. Verkman AS, Hara-Chikuma M, Papadopoulos MC (2008) Aquaporins-new players in cancer biology. J Mol Med (Berl) 86:523–529

    Article  CAS  Google Scholar 

  9. Oshio K, Binder DK, Liang Y, Bollen A, Feuerstein B, Berger MS, Manley GT (2005) Expression of the aquaporin-1 water channel in human glial tumours. Neurosurgery 56:375–381, discussion 375–381

    Article  PubMed  Google Scholar 

  10. Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S (2002) Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 87:621–623

    Article  PubMed  CAS  Google Scholar 

  11. Warth A, Simon P, Capper D, Goeppert B, Tabatabai G, Herzog H, Dietz K, Stubenvoll F, Ajaaj R, Becker R et al (2007) Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood–brain barrier disturbance but not with patient survival. J Neurosci Res 85:1336–1346

    Article  PubMed  CAS  Google Scholar 

  12. Warth A, Mittelbronn M, Hulper P, Erdlenbruch B, Wolburg H (2007) Expression of the water channel protein aquaporin-9 in malignant brain tumours. Appl Immunohistochem Mol Morphol 15:193–198

    Article  PubMed  CAS  Google Scholar 

  13. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

    Article  PubMed  CAS  Google Scholar 

  14. Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421

    Article  PubMed  CAS  Google Scholar 

  15. Kerbel RS (2000) Tumour angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  PubMed  CAS  Google Scholar 

  16. Vacca A, Ribatti D, Roccaro AM, Ria R, Palermo L, Dammacco F (2001) Bone marrow angiogenesis and plasma cell angiogenic and invasive potential in patients with active multiple myeloma. Acta Haematol 106:162–169

    Article  PubMed  CAS  Google Scholar 

  17. Huebert RC, Vasdev MM, Shergill U, Das A, Huang BQ, Charlton MR, LaRusso NF, Shah VH (2010) Aquaporin-1 facilitates angiogenic invasion in the pathological neovasculature that accompanies cirrhosis. Hepatology 52:238–248

    Article  PubMed  CAS  Google Scholar 

  18. Huebert RC, Jagavelu K, Hendrickson HI, Vasdev MM, Arab JP, Splinter PL, Trussoni CE, Larusso NF, Shah VH (2011) Aquaporin-1 promotes angiogenesis, fibrosis, and portal hypertension through mechanisms dependent on osmotically sensitive microRNAs. Am J Pathol 179:1851–1860

    Article  PubMed  CAS  Google Scholar 

  19. Camerino GM, Nicchia GP, Dinardo MM, Ribatti D, Svelto M, Frigeri A (2006) In vivo silencing of aquaporin-1 by RNA interference inhibits angiogenesis in the chick embryo chorioallantoic membrane assay. Cell Mol Biol (Noisy-le-grand) 52:51–56

    CAS  Google Scholar 

  20. Langenkamp E, Vom Hagen FM, Zwiers PJ, Moorlag HE, Schouten JP, Hammes HP, Gouw AS, Molema G (2011) Tumour Vascular Morphology Undergoes Dramatic Changes during Outgrowth of B16 Melanoma While Proangiogenic Gene Expression Remains Unchanged. ISRN Oncol 2011:409308

    PubMed  Google Scholar 

  21. Ikeda K, Nakano R, Uraoka M, Nakagawa Y, Koide M, Katsume A, Minamino K, Yamada E, Yamada H, Quertermous T et al (2009) Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2. Proc Natl Acad Sci USA 106:8227–8232

    Article  PubMed  CAS  Google Scholar 

  22. Nicchia GP, Srinivas M, Li W, Brosnan CF, Frigeri A, Spray DC (2005) New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J 19

  23. Nicchia GP, Mastrototaro M, Rossi A, Pisani F, Tortorella C, Ruggieri M, Lia A, Trojano M, Frigeri A, Svelto M (2009) Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia 57:1363–1373

    Article  PubMed  Google Scholar 

  24. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200

    Article  PubMed  CAS  Google Scholar 

  25. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  PubMed  CAS  Google Scholar 

  26. Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966

    Article  PubMed  CAS  Google Scholar 

  27. Agre P, Smith BL, Preston GM (1995) ABH and Colton blood group antigens on aquaporin-1, the human red cell water channel protein. Transfus Clin Biol 2:303–308

    Article  PubMed  CAS  Google Scholar 

  28. Chou CL, Knepper MA, Hoek AN, Brown D, Yang B, Ma T, Verkman AS (1999) Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. J Clin Invest 103:491–496

    Article  PubMed  CAS  Google Scholar 

  29. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  PubMed  CAS  Google Scholar 

  30. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  31. Prager G.W. PM, Unseld M., Zielinski C.C. (2011) Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res

  32. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumours. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  33. La Porta C (2010) AQP1 is not only a water channel: It contributes to cell migration through Lin7/beta-catenin. Cell Adh Migr 4:204–206

    Article  PubMed  Google Scholar 

  34. Nicchia GP, Rossi A, Mola MG, Procino G, Frigeri A, Svelto M (2008) Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes. Glia 56:1755–1766

    Article  PubMed  Google Scholar 

  35. Abreu-Rodriguez I, Sanchez Silva R, Martins AP, Soveral G, Toledo-Aral JJ, Lopez-Barneo J, Echevarria M (2011) Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1alpha. PLoS One 6:e28385

    Article  PubMed  CAS  Google Scholar 

  36. Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157:534–544

    Article  PubMed  CAS  Google Scholar 

  37. Semenza GL (2001) Regulation of hypoxia-induced angiogenesis: a chaperone escorts VEGF to the dance. J Clin Invest 108:39–40

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from “Progetto di Ricerca IDEA Giovani Ricercatori (GRBA085SIS)”, “Rete Nazionale di Proteomica (RBRN07BMCT_009)”, “FIRB Idee Progettuali (RBIP0695BB_004)” and by the Apulia region grant “Progetto Strategico APQ Ricerca (Neurobiotech) [PS124]”. The authors would like to thank Richard Lusardi for his assistance in revising the English of the article and Gaetano De Vito for his excellent technical assistance.

Disclosure Statement

The authors declare they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia P. Nicchia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicchia, G.P., Stigliano, C., Sparaneo, A. et al. Inhibition of aquaporin-1 dependent angiogenesis impairs tumour growth in a mouse model of melanoma. J Mol Med 91, 613–623 (2013). https://doi.org/10.1007/s00109-012-0977-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0977-x

Keywords

Navigation