Skip to main content
Log in

Functional primate genomics—leveraging the medical potential

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Within biomedicine, comparative genomics is crucial for interpreting human genetic variants and building proper animal models. As our closest relatives, primates are of particular relevance in this frame work. Here, I review principles and concrete examples of this approach. Since one can expect that generating the necessary genomic DNA sequences will not be the major limiting factor in the near future, I argue that in analogy to human biomedicine, comprehensive phenotyping of different primates will be a crucial next step to tap the full potential of comparative genomics. Especially the possibility to generate pluripotent stem cells from primates should allow extending the comparative approach to many medically relevant questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nesse RM, Bergstrom CT, Ellison PT, Flier JS, Gluckman P, Govindaraju DR, Niethammer D, Omenn GS, Perlman RL, Schwartz MD et al (2010) Evolution in health and medicine Sackler colloquium: making evolutionary biology a basic science for medicine. Proc Natl Acad Sci U S A 107(Suppl 1):1800–1807

    Article  PubMed  CAS  Google Scholar 

  2. Pennisi E (2011) Evolution. Darwinian medicine’s drawn-out dawn. Science 334:1486–1487

    Article  PubMed  CAS  Google Scholar 

  3. Little TJ, Allen JE, Babayan SA, Matthews KR, Colegrave N (2012) Harnessing evolutionary biology to combat infectious disease. Nat Med 18:217–220

    Article  PubMed  CAS  Google Scholar 

  4. Althouse BM, Bergstrom TC, Bergstrom CT (2010) Evolution in health and medicine Sackler colloquium: a public choice framework for controlling transmissible and evolving diseases. Proc Natl Acad Sci U S A 107(Suppl 1):1696–1701

    Article  PubMed  CAS  Google Scholar 

  5. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  PubMed  CAS  Google Scholar 

  6. Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463

    Article  PubMed  CAS  Google Scholar 

  7. Crespi BJ (2011) The emergence of human-evolutionary medical genomics. Evol Appl 4:292–314

    Article  Google Scholar 

  8. Genome_10K_Community (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100:659–674

    Article  CAS  Google Scholar 

  9. Cooper GM, Shendure J (2011) Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet 12:628–640

    Article  PubMed  CAS  Google Scholar 

  10. Hurst LD (2009) Fundamental concepts in genetics: genetics and the understanding of selection. Nat Rev Genet 10:83–93

    Article  PubMed  CAS  Google Scholar 

  11. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, Jordan G, Mauceli E et al (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:476–482

    Article  PubMed  CAS  Google Scholar 

  12. Dudley JT, Chen R, Sanderford M, Butte AJ, Kumar S (2012) Evolutionary meta-analysis of association studies reveals ancient constraints affecting disease marker discovery. Mol Biol Evol. doi:10.1093/molbev/mss079

  13. Eddy SR (2005) A model of the statistical power of comparative genome sequence analysis. PLoS Biol 3:e10

    Article  PubMed  CAS  Google Scholar 

  14. Meader S, Ponting CP, Lunter G (2010) Massive turnover of functional sequence in human and other mammalian genomes. Genome Res 20:1335–1343

    Article  PubMed  CAS  Google Scholar 

  15. Ponting CP, Nellaker C, Meader S (2011) Rapid turnover of functional sequence in human and other genomes. Annu Rev Genomics Hum Genet 12:275–299

    Article  PubMed  CAS  Google Scholar 

  16. Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I, Pachter L, Rubin EM (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299:1391–1394

    Article  PubMed  CAS  Google Scholar 

  17. Prabhakar S, Poulin F, Shoukry M, Afzal V, Rubin EM, Couronne O, Pennacchio LA (2006) Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res 16:855–863

    Article  PubMed  CAS  Google Scholar 

  18. Wang QF, Prabhakar S, Wang Q, Moses AM, Chanan S, Brown M, Eisen MB, Cheng JF, Rubin EM, Boffelli D (2006) Primate-specific evolution of an LDLR enhancer. Genome Biol 7:R68

    Article  PubMed  CAS  Google Scholar 

  19. Wang QF, Prabhakar S, Chanan S, Cheng JF, Rubin EM, Boffelli D (2007) Detection of weakly conserved ancestral mammalian regulatory sequences by primate comparisons. Genome Biol 8:R1

    Article  PubMed  CAS  Google Scholar 

  20. Marques-Bonet T, Ryder OA, Eichler EE (2009) Sequencing primate genomes: what have we learned? Annu Rev Genom Hum Genet 10:355–386

    Article  CAS  Google Scholar 

  21. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

    Article  PubMed  CAS  Google Scholar 

  22. Bradley BJ, Lawler RR (2011) Linking genotypes, phenotypes, and fitness in wild primate populations. Evol Anthropol 20:104–119

    Article  PubMed  Google Scholar 

  23. Alkan C, Sajjadian S, Eichler EE (2011) Limitations of next-generation genome sequence assembly. Nat Methods 8:61–65

    Article  PubMed  CAS  Google Scholar 

  24. Mallick S, Gnerre S, Muller P, Reich D (2009) The difficulty of avoiding false positives in genome scans for natural selection. Genome Res 19:922–933

    Article  PubMed  CAS  Google Scholar 

  25. Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y et al (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342

    Article  PubMed  CAS  Google Scholar 

  26. George RD, McVicker G, Diederich R, Ng SB, MacKenzie AP, Swanson WJ, Shendure J, Thomas JH (2011) Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Res 21:1686–1694

    Article  PubMed  CAS  Google Scholar 

  27. Siepel A (2009) Phylogenomics of primates and their ancestral populations. Genome Res 19:1929–1941

    Article  PubMed  CAS  Google Scholar 

  28. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH et al (2010) A draft sequence of the Neanderthal genome. Science 328:710–722

    Article  PubMed  CAS  Google Scholar 

  29. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL et al (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053–1060

    Article  PubMed  CAS  Google Scholar 

  30. Stoneking M, Krause J (2011) Learning about human population history from ancient and modern genomes. Nat Rev Genet 12:603–614

    Article  PubMed  CAS  Google Scholar 

  31. Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K, Gragert L, Babrzadeh F, Gharizadeh B, Luo M, Plummer FA et al (2011) The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334:89–94

    Article  PubMed  CAS  Google Scholar 

  32. Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326

    Article  PubMed  CAS  Google Scholar 

  33. Zhang YE, Vibranovski MD, Landback P, Marais GA, Long M (2010) Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol 8

  34. Zhang YE, Landback P, Vibranovski MD, Long M (2011) Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9:e1001179

    Article  PubMed  CAS  Google Scholar 

  35. Kronenberg F, Utermann G (2012) Lipoprotein(a): reloaded. Curr Cardiovasc Risk Rep 6:12–20

    Article  Google Scholar 

  36. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S et al (2009) Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med 361:2518–2528

    Article  PubMed  CAS  Google Scholar 

  37. Lawn RM, Schwartz K, Patthy L (1997) Convergent evolution of apolipoprotein(a) in primates and hedgehog. Proc Natl Acad Sci U S A 94:11992–11997

    Article  PubMed  CAS  Google Scholar 

  38. Makino K, Scanu AM (1991) Lipoprotein(a): nonhuman primate models. Lipids 26:679–683

    Article  PubMed  CAS  Google Scholar 

  39. Boffelli D, Cheng JF, Rubin EM (2004) Convergent evolution in primates and an insectivore. Genomics 83:19–23

    Article  PubMed  CAS  Google Scholar 

  40. Lawn RM, Boonmark NW, Schwartz K, Lindahl GE, Wade DP, Byrne CD, Fong KJ, Meer K, Patthy L (1995) The recurring evolution of lipoprotein(a). Insights from cloning of hedgehog apolipoprotein(a). J Biol Chem 270:24004–24009

    Article  PubMed  CAS  Google Scholar 

  41. Williamsblangero S, Rainwater DL (1991) Variation in Lp(a) levels and Apo(a) isoform frequencies in 5 baboon subspecies. Hum Biol 63:65–76

    CAS  Google Scholar 

  42. Dupanloup I, Kaessmann H (2006) Evolutionary simulations to detect functional lineage-specific genes. Bioinformatics 22:1815–1822

    Article  PubMed  CAS  Google Scholar 

  43. Fischer A, Prufer K, Good JM, Halbwax M, Wiebe V, Andre C, Atencia R, Mugisha L, Ptak SE, Paabo S (2011) Bonobos fall within the genomic variation of chimpanzees. PLoS One 6:e21605

    Article  PubMed  CAS  Google Scholar 

  44. Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R (2011) Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 7:e1002355

    Article  PubMed  CAS  Google Scholar 

  45. Han R (2010) Plasma lipoproteins are important components of the immune system. Microbiol Immunol 54:246–253

    Article  PubMed  CAS  Google Scholar 

  46. Hoover-Plow J, Hart E, Gong Y, Shchurin A, Schneeman T (2009) A physiological function for apolipoprotein(a): a natural regulator of the inflammatory response. Exp Biol Med (Maywood) 234:28–34

    Article  CAS  Google Scholar 

  47. Brown MS, Goldstein JL (1987) Plasma lipoproteins: teaching old dogmas new tricks. Nature 330:113–114

    Article  PubMed  CAS  Google Scholar 

  48. Lehner B (2011) Molecular mechanisms of epistasis within and between genes. Trends Genet 27:323–331

    Article  PubMed  CAS  Google Scholar 

  49. Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci U S A 99:14878–14883

    Article  PubMed  CAS  Google Scholar 

  50. Mikkelsen T, Hillier L, Eichler E, Zody M, Jaffe D, Yang S, Enard W, Hellmann I, Lindblad-Toh K, Altheide T et al (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  51. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  PubMed  CAS  Google Scholar 

  52. Zhang G, Pei Z, Krawczak M, Ball EV, Mort M, Kehrer-Sawatzki H, Cooper DN (2010) Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. Hum Mutat 31:1286–1293

    Article  PubMed  Google Scholar 

  53. Gao L, Zhang J (2003) Why are some human disease-associated mutations fixed in mice? Trends Genet 19:678–681

    Article  PubMed  CAS  Google Scholar 

  54. Hauser PS, Narayanaswami V, Ryan RO (2011) Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 50:62–74

    Article  PubMed  CAS  Google Scholar 

  55. Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344

    Article  PubMed  CAS  Google Scholar 

  56. Mahley RW, Weisgraber KH, Huang Y (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 50(Suppl):S183–188

    Article  PubMed  CAS  Google Scholar 

  57. Zhong N, Ramaswamy G, Weisgraber KH (2009) Apolipoprotein E4 domain interaction induces endoplasmic reticulum stress and impairs astrocyte function. J Biol Chem 284:27273–27280

    Article  PubMed  CAS  Google Scholar 

  58. Zhong N, Scearce-Levie K, Ramaswamy G, Weisgraber KH (2008) Apolipoprotein E4 domain interaction: synaptic and cognitive deficits in mice. Alzheimers Dement 4:179–192

    Article  PubMed  CAS  Google Scholar 

  59. Chen HK, Ji ZS, Dodson SE, Miranda RD, Rosenblum CI, Reynolds IJ, Freedman SB, Weisgraber KH, Huang Y, Mahley RW (2011) Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J Biol Chem 286:5215–5221

    Article  PubMed  CAS  Google Scholar 

  60. Finch CE (2010) Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci U S A 107(Suppl 1):1718–1724

    Article  PubMed  CAS  Google Scholar 

  61. Charlesworth J, Eyre-Walker A (2007) The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proc Natl Acad Sci U S A 104:16992–16997

    Article  PubMed  CAS  Google Scholar 

  62. Chun S, Fay JC (2011) Evidence for hitchhiking of deleterious mutations within the human genome. PLoS Genet 7:e1002240

    Article  PubMed  CAS  Google Scholar 

  63. Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A (2008) Patterns of positive selection in six mammalian genomes. PLoS Genet 4:e1000144

    Article  PubMed  CAS  Google Scholar 

  64. Fullerton SM, Clark AG, Weiss KM, Nickerson DA, Taylor SL, Stengard JH, Salomaa V, Vartiainen E, Perola M, Boerwinkle E et al (2000) Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism. Am J Hum Genet 67:881–900

    Article  PubMed  CAS  Google Scholar 

  65. Drenos F, Kirkwood TB (2010) Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E. PLoS One 5:e10022

    Article  PubMed  CAS  Google Scholar 

  66. Trotter JH, Liebl AL, Weeber EJ, Martin LB (2011) Linking ecological immunology and evolutionary medicine: the case for apolipoprotein E. Funct Ecol 25:40–47

    Article  Google Scholar 

  67. Vamathevan JJ, Hasan S, Emes RD, Amrine-Madsen H, Rajagopalan D, Topp SD, Kumar V, Word M, Simmons MD, Foord SM et al (2008) The role of positive selection in determining the molecular cause of species differences in disease. BMC Evol Biol 8:273

    Article  PubMed  CAS  Google Scholar 

  68. Enard W (2011) FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol 21(3):415–424

    Article  PubMed  CAS  Google Scholar 

  69. Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20:R208–215

    Article  PubMed  CAS  Google Scholar 

  70. Przeworski M (2002) The signature of positive selection at randomly chosen loci. Genetics 160:1179–1189

    PubMed  Google Scholar 

  71. Jensen JD, Wong A, Aquadro CF (2007) Approaches for identifying targets of positive selection. Trends Genet 23:568–577

    Article  PubMed  CAS  Google Scholar 

  72. Pool JE, Hellmann I, Jensen JD, Nielsen R (2010) Population genetic inference from genomic sequence variation. Genome Res 20:291–300

    Article  PubMed  CAS  Google Scholar 

  73. Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG (2007) Recent and ongoing selection in the human genome. Nat Rev Genet 8:857–868

    Article  PubMed  CAS  Google Scholar 

  74. Akey JM (2009) Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res 19:711–722

    Article  PubMed  CAS  Google Scholar 

  75. Teshima KM, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps? Genome Res 16:702–712

    Article  PubMed  CAS  Google Scholar 

  76. Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390

    Article  PubMed  CAS  Google Scholar 

  77. McVicker G, Gordon D, Davis C, Green P (2009) Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet 5:e1000471

    Article  PubMed  CAS  Google Scholar 

  78. Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303

    PubMed  CAS  Google Scholar 

  79. Casto AM, Feldman MW (2011) Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? PLoS Genet 7:e1001266

    Article  PubMed  CAS  Google Scholar 

  80. Johnson WE, Sawyer SL (2009) Molecular evolution of the antiretroviral TRIM5 gene. Immunogenetics 61:163–176

    Article  PubMed  CAS  Google Scholar 

  81. Kaiser SM, Malik HS, Emerman M (2007) Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science 316:1756–1758

    Article  PubMed  CAS  Google Scholar 

  82. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853

    Article  PubMed  CAS  Google Scholar 

  83. Mustonen V, Lassig M (2009) From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet 25:111–119

    Article  PubMed  CAS  Google Scholar 

  84. Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, Sella G, Przeworski M (2011) Classic selective sweeps were rare in recent human evolution. Science 331:920–924

    Article  PubMed  CAS  Google Scholar 

  85. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR et al (2008) Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4:e1000083

    Article  PubMed  CAS  Google Scholar 

  86. Enard W, Paabo S (2004) Comparative primate genomics. Annu Rev Genom Hum Genet 5:351–378

    Article  CAS  Google Scholar 

  87. Timpson N, Heron J, Smith GD, Enard W (2007) Comment on papers by Evans et al. and Mekel-Bobrov et al. on Evidence for positive selection of MCPH1 and ASPM. Science 317:1036, author reply 1036

    Article  PubMed  CAS  Google Scholar 

  88. Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, Bruckner MK, Schreiweis C, Winter C, Sohr R et al (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971

    Article  PubMed  CAS  Google Scholar 

  89. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  PubMed  CAS  Google Scholar 

  90. Schadt EE, Bjorkegren JL (2012) NEW: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med 4:115rv111

    Article  CAS  Google Scholar 

  91. Tirosh I, Barkai N (2011) Inferring regulatory mechanisms from patterns of evolutionary divergence. Mol Syst Biol 7:530

    Article  PubMed  Google Scholar 

  92. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF, Heiman DI et al (2011) Comparative functional genomics of the fission yeasts. Science 332:930–936

    Article  PubMed  CAS  Google Scholar 

  93. Xie D, Chen CC, He X, Cao X, Zhong S (2011) Towards an evolutionary model of transcription networks. PLoS Comput Biol 7:e1002064

    Article  PubMed  CAS  Google Scholar 

  94. Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI (2011) Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol 28:625–638

    Article  PubMed  CAS  Google Scholar 

  95. O’Connor TD, Mundy NI (2009) Genotype–phenotype associations: substitution models to detect evolutionary associations between phenotypic variables and genotypic evolutionary rate. Bioinformatics 25:i94–100

    Article  PubMed  CAS  Google Scholar 

  96. Dorus S, Evans PD, Wyckoff GJ, Choi SS, Lahn BT (2004) Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuity. Nat Genet 36:1326–1329

    Article  PubMed  CAS  Google Scholar 

  97. Wlasiuk G, Nachman MW (2010) Promiscuity and the rate of molecular evolution at primate immunity genes. Evolution 64:2204–2220

    PubMed  CAS  Google Scholar 

  98. Beutner F, Teupser D, Gielen S, Holdt LM, Scholz M, Boudriot E, Schuler G, Thiery J (2011) Rationale and design of the Leipzig (LIFE) Heart Study: phenotyping and cardiovascular characteristics of patients with coronary artery disease. PLoS One 6:e29070

    Article  PubMed  CAS  Google Scholar 

  99. Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher M et al (2011) The evolution of gene expression levels in mammalian organs. Nature 478:343–348

    Article  PubMed  CAS  Google Scholar 

  100. Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P, Nieselt-Struwe K, Muchmore E, Varki A, Ravid R et al (2002) Intra- and interspecific variation in primate gene expression patterns. Science 296:340–343

    Article  PubMed  CAS  Google Scholar 

  101. Fu X, Giavalisco P, Liu X, Catchpole G, Fu N, Ning ZB, Guo S, Yan Z, Somel M, Paabo S et al (2011) Rapid metabolic evolution in human prefrontal cortex. Proc Natl Acad Sci U S A 108:6181–6186

    Article  PubMed  CAS  Google Scholar 

  102. Somel M, Liu X, Tang L, Yan Z, Hu H, Guo S, Jiang X, Zhang X, Xu G, Xie G et al (2011) MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol 9:e1001214

    Article  PubMed  CAS  Google Scholar 

  103. Liu X, Somel M, Tang L, Yan Z, Jiang X, Guo S, Yuan Y, He L, Oleksiak A, Zhang Y et al (2012) Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res 22(4):611–622. doi:10.1101/gr.127324.111

    Article  PubMed  CAS  Google Scholar 

  104. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    Article  PubMed  CAS  Google Scholar 

  105. Ben-Nun IF, Montague SC, Houck ML, Tran HT, Garitaonandia I, Leonardo TR, Wang YC, Charter SJ, Laurent LC, Ryder OA et al (2011) Induced pluripotent stem cells from highly endangered species. Nat Methods 8:829–831

    Article  PubMed  CAS  Google Scholar 

  106. Zhong B, Trobridge GD, Zhang X, Watts KL, Ramakrishnan A, Wohlfahrt M, Adair JE, Kiem HP (2011) Efficient generation of nonhuman primate induced pluripotent stem cells. Stem Cells Dev 20:795–807

    Article  PubMed  CAS  Google Scholar 

  107. McMahon MA, Rahdar M, Porteus M (2012) Gene editing: not just for translation anymore. Nat Methods 9:28–31

    Article  CAS  Google Scholar 

  108. Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22:1367–1375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Enard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enard, W. Functional primate genomics—leveraging the medical potential. J Mol Med 90, 471–480 (2012). https://doi.org/10.1007/s00109-012-0901-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0901-4

Keywords

Navigation