Skip to main content

Natriuretic Peptides: Critical Regulators of Cardiac Fibroblasts and the Extracellular Matrix in the Heart

  • Chapter
  • First Online:
Cardiac Fibrosis and Heart Failure: Cause or Effect?

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 13))

Abstract

The mammalian heart contains numerous cell types with cardiac fibroblasts accounting for the majority of cells. These fibroblasts play essential roles in the heart including the synthesis and remodeling of the extracellular matrix (ECM), which is the component of the heart that includes interstitial collagens. In the setting of heart disease, including heart failure (HF), abnormal fibroblast proliferation and deposition of collagens leads to adverse structural remodeling, which is a major contributing factor to the progression of heart disease. Structural remodeling of the ECM in HF can increase stiffness of the myocardium leading to impaired cardiac performance and also increase the occurrence of cardiac arrhythmias due to impaired electrical conduction. Natriuretic peptides (NPs) are a family of cardioprotective hormones with numerous effects in the cardiovascular system. Included among these is the ability to prevent fibroblast proliferation and abnormal collagen deposition in the ECM. NPs elicit their effects by binding to three NP receptors denoted NPR-A, NPR-B and NPR-C. NPR-A and NPR-B are guanylyl cyclase-linked NPRs that elicit their effects by increasing cGMP levels. NPR-C is linked to the activation of inhibitory G-proteins (Gi). All three NPRs are expressed in cardiac fibroblasts and each has been shown to play a role in the ability of NPs to protect against adverse structural remodeling in the heart. The purpose of this chapter is to provide an overview of NPs and how they affect remodeling of the ECM in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291(3):H1015–1026. doi:10.1152/ajpheart.00023.2006

    Article  CAS  PubMed  Google Scholar 

  2. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176. doi:10.1161/CIRCRESAHA.109.209809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65(1):40–51. doi:10.1016/j.cardiores.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  4. Wolf RM, Glynn P, Hashemi S, Zarei K, Mitchell CC, Anderson ME, Mohler PJ, Hund TJ (2013) Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis. Am J Physiol Heart Circ Physiol 304(9):H1253–1266. doi:10.1152/ajpheart.00734.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yue L, Xie J, Nattel S (2011) Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res 89(4):744–753. doi:10.1093/cvr/cvq329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339(5):321–328. doi:10.1056/NEJM199807303390507

    Article  CAS  PubMed  Google Scholar 

  7. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27(1):47–72. doi:10.1210/er.2005–0014

    Article  CAS  PubMed  Google Scholar 

  8. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28(1):89–94

    Article  PubMed  Google Scholar 

  9. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332(6159):78–81. doi:10.1038/332078a0

    Article  CAS  PubMed  Google Scholar 

  10. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168(2):863–870

    Article  CAS  PubMed  Google Scholar 

  11. Minamino N, Aburaya M, Ueda S, Kangawa K, Matsuo H (1988) The presence of brain natriuretic peptide of 12,000 daltons in porcine heart. Biochem Biophys Res Commun 155(2):740–746

    Article  CAS  PubMed  Google Scholar 

  12. Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M (1992) A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 267(20):13928–13932

    CAS  PubMed  Google Scholar 

  13. Schirger JA, Heublein DM, Chen HH, Lisy O, Jougasaki M, Wennberg PW, Burnett JC Jr. (1999) Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc Mayo Clin 74(2):126–130. doi:10.4065/74.2.126

    Article  CAS  PubMed  Google Scholar 

  14. Thibault G, Charbonneau C, Bilodeau J, Schiffrin EL, Garcia R (1992) Rat brain natriuretic peptide is localized in atrial granules and released into the circulation. Am J Physiol 263(2 Pt 2):R301–309

    CAS  PubMed  Google Scholar 

  15. de Bold AJ, Bruneau BG, Kuroski de Bold ML (1996) Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovasc Res 31(1):7–18

    Article  PubMed  Google Scholar 

  16. Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC Jr. (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 62(2):191–195

    Article  CAS  PubMed  Google Scholar 

  17. Inagami T (1989) Atrial natriuretic factor. J Biol Chem 264(6):3043–3046

    CAS  PubMed  Google Scholar 

  18. Yan W, Wu F, Morser J, Wu Q (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 97(15):8525–8529. doi:10.1073/pnas.150149097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gu J, DʼAndrea M, Seethapathy M (1989) Atrial natriuretic peptide and its messenger ribonucleic acid in overloaded and overload-released ventricles of rat. Endocrinology 125(4):2066–2074. doi:10.1210/endo-125-4-2066

    Article  CAS  PubMed  Google Scholar 

  20. Saito Y, Nakao K, Arai H, Nishimura K, Okumura K, Obata K, Takemura G, Fujiwara H, Sugawara A, Yamada T et al (1989) Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J Clin Invest 83(1):298–305. doi:10.1172/JCI113872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, Shaknovich A, Pondolfino K, Clark M, Camargo MJ et al (1986) Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest 78(5):1362–1374. doi:10.1172/JCI112723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H et al (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87(4):1402–1412. doi:10.1172/JCI115146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CG, Edwards WD, Schaff HV, Burnett JC Jr. (1993) Natriuretic peptide system in human heart failure. Circulation 88(3):1004–1009

    Article  CAS  PubMed  Google Scholar 

  24. Grepin C, Dagnino L, Robitaille L, Haberstroh L, Antakly T, Nemer M (1994) A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 14(5):3115–3129

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Thuerauf DJ, Hanford DS, Glembotski CC (1994) Regulation of rat brain natriuretic peptide transcription. A potential role for GATA-related transcription factors in myocardial cell gene expression. J Biol Chem 269(27):17772–17775

    CAS  PubMed  Google Scholar 

  26. Nakagawa O, Ogawa Y, Itoh H, Suga S, Komatsu Y, Kishimoto I, Nishino K, Yoshimasa T, Nakao K (1995) Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest 96(3):1280–1287. doi:10.1172/JCI118162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wu C, Wu F, Pan J, Morser J, Wu Q (2003) Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem 278(28):25847–25852. doi:10.1074/jbc.M301223200

    Article  CAS  PubMed  Google Scholar 

  28. Minamino N, Aburaya M, Kojima M, Miyamoto K, Kangawa K, Matsuo H (1993) Distribution of C-type natriuretic peptide and its messenger RNA in rat central nervous system and peripheral tissue. Biochem Biophys Res Commun 197:326–335

    Article  CAS  PubMed  Google Scholar 

  29. Stingo AJ, Clavell AL, Heublein DM, Wei CM, Pittelkow MR, Burnett JC Jr. (1992) Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 263(4 Pt 2):H1318–1321

    CAS  PubMed  Google Scholar 

  30. Igaki T, Itoh H, Suga S, Komatsu Y, Ogawa Y, Doi K, Yoshimasa T, Nakao K (1996) Insulin suppresses endothelial secretion of C-type natriuretic peptide, a novel endothelium-derived relaxing peptide. Diabetes 45(Suppl 3):S62–64

    Article  CAS  PubMed  Google Scholar 

  31. Pandey KN (2005) Biology of natriuretic peptides and their receptors. Peptides 26(6):901–932. doi:10.1016/j.peptides.2004.09.024

    Article  CAS  PubMed  Google Scholar 

  32. Del Ry S, Passino C, Maltinti M, Emdin M, Giannessi D (2005) C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity. Eur J Heart Fail 7(7):1145–1148. doi:10.1016/j.ejheart.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  33. Kerr MA, Kenny AJ (1974) The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J 137(3):477–488

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Smith MW, Espiner EA, Yandle TG, Charles CJ, Richards AM (2000) Delayed metabolism of human brain natriuretic peptide reflects resistance to neutral endopeptidase. J Endocrinol 167(2):239–246

    Article  CAS  PubMed  Google Scholar 

  35. Anand-Srivastava MB, Trachte GJ (1993) Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45(4):455–497

    CAS  PubMed  Google Scholar 

  36. Anand-Srivastava MB (2005) Natriuretic peptide receptor-C signaling and regulation. Peptides 26(6):1044–1059. doi:10.1016/j.peptides.2004.09.023

    Article  CAS  PubMed  Google Scholar 

  37. Rose RA, Giles WR (2008) Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol 586(2):353–366. doi:10.1113/jphysiol.2007.144253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pagano M, Anand-Srivastava MB (2001) Cytoplasmic domain of natriuretic peptide receptor C constitutes Gi activator sequences that inhibit adenylyl cyclase activity. J Biol Chem 276(25):22064–22070. doi:10.1074/jbc.M101587200

    Article  CAS  PubMed  Google Scholar 

  39. Zhou H, Murthy KS (2003) Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C). Am J Physiol Cell Physiol 284(5):C1255–1261. doi:10.1152/ajpcell.00520.2002

    Article  CAS  PubMed  Google Scholar 

  40. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A 97(8):4239–4244. doi:10.1073/pnas.070371497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378(6552):65–68. doi:10.1038/378065a0

    Article  CAS  PubMed  Google Scholar 

  42. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 94(26):14730–14735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Franco V, Chen YF, Feng JA, Li P, Wang D, Hasan E, Oparil S, Perry GJ (2006) Eplerenone prevents adverse cardiac remodelling induced by pressure overload in atrial natriuretic peptide-null mice. Clin Exp Pharmacol Physiol 33(9):773–779. doi:10.1111/j.1440-1681.2006.04434.x

    Article  CAS  PubMed  Google Scholar 

  44. Franco V, Chen YF, Oparil S, Feng JA, Wang D, Hage F, Perry G (2004) Atrial natriuretic peptide dose-dependently inhibits pressure overload-induced cardiac remodeling. Hypertension 44(5):746–750. doi:10.1161/01.HYP.0000144801.09557.4c

    Article  CAS  PubMed  Google Scholar 

  45. Wang D, Gladysheva IP, Fan TH, Sullivan R, Houng AK, Reed GL (2014) Atrial natriuretic Peptide affects cardiac remodeling, function, heart failure, and survival in a mouse model of dilated cardiomyopathy. Hypertension 63(3):514–519. doi:10.1161/HYPERTENSIONAHA.113.02164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang D, Oparil S, Feng JA, Li P, Perry G, Chen LB, Dai M, John SW, Chen YF (2003) Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42(1):88–95. doi:10.1161/01.HYP.0000074905.22908.A6

    Article  CAS  PubMed  Google Scholar 

  47. Ellmers LJ, Knowles JW, Kim HS, Smithies O, Maeda N, Cameron VA (2002) Ventricular expression of natriuretic peptides in Npr1(-/-) mice with cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 283(2):H707–714. doi:10.1152/ajpheart.00677.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E (2002) Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart 87(4):368–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Vellaichamy E, Khurana ML, Fink J, Pandey KN (2005) Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J Biol Chem 280(19):19230–19242. doi:10.1074/jbc.M411373200

    Article  CAS  PubMed  Google Scholar 

  50. Ellmers LJ, Scott NJ, Piuhola J, Maeda N, Smithies O, Frampton CM, Richards AM, Cameron VA (2007) Npr1-regulated gene pathways contributing to cardiac hypertrophy and fibrosis. J Mol Endocrinol 38(1–2):245–257. doi:10.1677/jme.1.02138

    Article  CAS  PubMed  Google Scholar 

  51. Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray, G, Rose RA (2015) Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol 593:1127–1146.

    Google Scholar 

  52. Tsuruda T, Boerrigter G, Huntley BK, Noser JA, Cataliotti A, Costello-Boerrigter LC, Chen HH, Burnett JC Jr. (2002) Brain natriuretic Peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 91(12):1127–1134

    Article  CAS  PubMed  Google Scholar 

  53. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K (2003) Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 144(6):2279–2284

    Article  CAS  PubMed  Google Scholar 

  54. Harada E, Nakagawa O, Yoshimura M, Harada M, Nakagawa M, Mizuno Y, Shimasaki Y, Nakayama M, Yasue H, Kuwahara K, Saito Y, Nakao K (1999) Effect of interleukin-1 beta on cardiac hypertrophy and production of natriuretic peptides in rat cardiocyte culture. J Mol Cell Cardiol 31(11):1997–2006. doi:10.1006/jmcc.1999.1030

    Article  CAS  PubMed  Google Scholar 

  55. Cao L, Gardner DG (1995) Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25(2):227–234

    Article  CAS  PubMed  Google Scholar 

  56. Anand-Srivastava MB, Sairam MR, Cantin M (1990) Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem 265(15):8566–8572

    CAS  PubMed  Google Scholar 

  57. Redondo J, Bishop JE, Wilkins MR (1998) Effect of atrial natriuretic peptide and cyclic GMP phosphodiesterase inhibition on collagen synthesis by adult cardiac fibroblasts. Br J Pharmacol 124(7):1455–1462. doi:10.1038/sj.bjp.0701994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Doyle DD, Upshaw-Earley J, Bell EL, Palfrey HC (2002) Natriuretic peptide receptor-B in adult rat ventricle is predominantly confined to the nonmyocyte population. Am J Physiol Heart Circ Physiol 282(6):H2117–2123. doi:10.1152/ajpheart.00988.2001

    Article  CAS  PubMed  Google Scholar 

  59. Huntley BK, Sandberg SM, Noser JA, Cataliotti A, Redfield MM, Matsuda Y, Burnett JC Jr. (2006) BNP-induced activation of cGMP in human cardiac fibroblasts: interactions with fibronectin and natriuretic peptide receptors. J Cell Physiol 209(3):943–949. doi:10.1002/jcp.20793

    Article  CAS  PubMed  Google Scholar 

  60. Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG (2009) Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 84(2):209–217. doi:10.1093/cvr/cvp208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Parthasarathy A, Gopi V, Umadevi S, Simna A, Sheik MJ, Divya H, Vellaichamy E (2013) Suppression of atrial natriuretic peptide/natriuretic peptide receptor-A-mediated signaling upregulates angiotensin-II-induced collagen synthesis in adult cardiac fibroblasts. Mol Cell Biochem 378(1–2):217–228. doi:10.1007/s11010-013-1612-z

    Article  CAS  PubMed  Google Scholar 

  62. Kapoun AM, Liang F, OʼYoung G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94(4):453–461. doi:10.1161/01.RES.0000117070.86556.9F

    Article  CAS  PubMed  Google Scholar 

  63. Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Schambelan M (1992) Characterization of angiotensin II receptor subtypes in rat heart. Circ Res 71(6):1482–1489

    Article  CAS  PubMed  Google Scholar 

  64. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH (1993) Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88(6):2849–2861

    Article  CAS  PubMed  Google Scholar 

  65. Crabos M, Roth M, Hahn AW, Erne P (1994) Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J Clin Invest 93(6):2372–2378. doi:10.1172/JCI117243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Iwami K, Ashizawa N, Do YS, Graf K, Hsueh WA (1996) Comparison of ANG II with other growth factors on Egr-1 and matrix gene expression in cardiac fibroblasts. Am J Physiol 270(6 Pt 2):H2100–2107

    CAS  PubMed  Google Scholar 

  67. Lijnen PJ, Petrov VV, Fagard RH (2001) Angiotensin II-induced stimulation of collagen secretion and production in cardiac fibroblasts is mediated via angiotensin II subtype 1 receptors. J Renin-Angiotensin-Aldosterone Syst 2(2):117–122. doi:10.3317/jraas.2001.012

    CAS  PubMed  Google Scholar 

  68. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415. doi:10.1038/332411a0

    Article  CAS  PubMed  Google Scholar 

  69. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS (1998) Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 40(2):352–363

    Article  CAS  PubMed  Google Scholar 

  70. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123(2):255–278. doi:10.1016/j.pharmthera.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  71. Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M, Adachi S, Akimoto H, Marumo F, Hiroe M (1995) Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Invest 96(2):1059–1065. doi:10.1172/JCI118092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Piacentini L, Gray M, Honbo NY, Chentoufi J, Bergman M, Karliner JS (2000) Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J Mol Cell Cardiol 32(4):565–576. doi:10.1006/jmcc.2000.1109

    Article  CAS  PubMed  Google Scholar 

  73. Kawana M, Lee ME, Quertermous EE, Quertermous T (1995) Cooperative interaction of GATA-2 and AP1 regulates transcription of the endothelin-1 gene. Mol Cell Biol 15(8):4225–4231

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Li YY, McTiernan CF, Feldman AM (2000) Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46(2):214–224

    Article  CAS  PubMed  Google Scholar 

  75. Whittaker P (1995) Unravelling the mysteries of collagen and cicatrix after myocardial infarction. Cardiovasc Res 29(6):758–762

    Article  CAS  PubMed  Google Scholar 

  76. Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K (2005) C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol 45(4):608–616. doi:10.1016/j.jacc.2004.10.067

    Article  CAS  PubMed  Google Scholar 

  77. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827. doi:10.1096/fj.03-1273rev

    Article  CAS  PubMed  Google Scholar 

  78. Calvieri C, Rubattu S, Volpe M (2012) Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med 90(1):5–13. doi:10.1007/s00109-011-0801-z

    Article  CAS  PubMed  Google Scholar 

  79. Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IM (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31(3):667–678. doi:10.1006/jmcc.1998.0902

    Article  CAS  PubMed  Google Scholar 

  80. Hao J, Wang B, Jones SC, Jassal DS, Dixon IM (2000) Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol Heart Circ Physiol 279(6):H3020–3030

    CAS  PubMed  Google Scholar 

  81. Brooks WW, Conrad CH (2000) Myocardial fibrosis in transforming growth factor beta(1) heterozygous mice. J Mol Cell Cardiol 32(2):187–195. doi:10.1006/jmcc.1999.1065

    Article  CAS  PubMed  Google Scholar 

  82. Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF (2008) Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102(2):185–192. doi:10.1161/CIRCRESAHA.107.157677

    Article  CAS  PubMed  Google Scholar 

  83. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr. (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148(5):1639–1648

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8(3):132–140

    Article  CAS  PubMed  Google Scholar 

  85. Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50(3):556–565

    Article  CAS  PubMed  Google Scholar 

  86. Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 17(17):5238–5248. doi:10.1093/emboj/17.17.5238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Moore L, Fan D, Basu R, Kandalam V, Kassiri Z (2012) Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev 17(4–5):693–706. doi:10.1007/s10741-011-9266-y

    Article  CAS  PubMed  Google Scholar 

  88. He J, Chen Y, Huang Y, Yao F, Wu Z, Chen S, Wang L, Xiao P, Dai G, Meng R, Zhang C, Tang L, Huang Y, Li Z (2009) Effect of long-term B-type natriuretic peptide treatment on left ventricular remodeling and function after myocardial infarction in rats. Eur J Pharmacol 602(1):132–137. doi:10.1016/j.ejphar.2008.10.064

    Article  CAS  PubMed  Google Scholar 

  89. Sun Y, Cleutjens JP, Diaz-Arias AA, Weber KT (1994) Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28(9):1423–1432

    Article  CAS  PubMed  Google Scholar 

  90. Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H (1995) Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 25(6):1252–1259

    Article  CAS  PubMed  Google Scholar 

  91. Izumiya Y, Araki S, Usuku H, Rokutanda T, Hanatani S, Ogawa H (2012) Chronic C-type natriuretic peptide infusion attenuates angiotensin II-induced myocardial superoxide production and cardiac remodeling. Int J Vasc Med 2012:246058. doi:10.1155/2012/246058

    PubMed Central  PubMed  Google Scholar 

  92. Rose RA (2010) CD-NP, a chimeric natriuretic peptide for the treatment of heart failure. Curr Opin Investig Drugs 11(3):349–356

    CAS  PubMed  Google Scholar 

  93. Lee CY, Lieu H, Burnett JC Jr. (2009) Designer natriuretic peptides. J Investig Med 57(1):18–21. doi:10.231/JIM.0b013e3181946fb2

    PubMed Central  PubMed  Google Scholar 

  94. Dickey DM, Burnett JC Jr., Potter LR (2008) Novel bifunctional natriuretic peptides as potential therapeutics. J Biol Chem 283(50):35003–35009. doi:10.1074/jbc.M804538200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Martin FL, Sangaralingham SJ, Huntley BK, McKie PM, Ichiki T, Chen HH, Korinek J, Harders GE, Burnett JC Jr. (2012) CD-NP: a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. PloS One 7(12):e52422. doi:10.1371/journal.pone.0052422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Ng XW, Huang Y, Chen HH, Burnett JC Jr., Boey FY, Venkatraman SS (2013) Cenderitide-eluting film for potential cardiac patch applications. PloS One 8(7):e68346. doi:10.1371/journal.pone.0068346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Chilton L, Ohya S, Freed D, George E, Drobic V, Shibukawa Y, Maccannell KA, Imaizumi Y, Clark RB, Dixon IM, Giles WR (2005) K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. Am J Physiol Heart Circ Physiol 288(6):H2931–2939. doi:10.1152/ajpheart.01220.2004

    Article  CAS  PubMed  Google Scholar 

  98. Rose RA, Hatano N, Ohya S, Imaizumi Y, Giles WR (2007) C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling. J Physiol 580(Pt 1):255–274. doi:10.1113/jphysiol.2006.120832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126(17):2051–2064. doi:10.1161/CIRCULATIONAHA.112.121830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Rose RA, Belke DD, Maleckar MM, Giles WR (2012) Ca2+ entry through TRP-C channels regulates fibroblast biology in chronic atrial fibrillation. Circulation 126(17):2039–2041. doi:10.1161/CIRCULATIONAHA.112.138065

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jansen, H., Rose, R. (2015). Natriuretic Peptides: Critical Regulators of Cardiac Fibroblasts and the Extracellular Matrix in the Heart. In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_19

Download citation

Publish with us

Policies and ethics