Skip to main content
Log in

Leptin regulates ACE activity in mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Leptin is a hormone related to metabolism. It also influences blood pressure, but the mechanisms triggered in this process are not yet elucidated. Angiotensin-I converting enzyme (ACE) regulates cardiovascular functions and recently has been associated with metabolism control and obesity. Here, we used ob/ob mice, a model lacking leptin, to answer the question whether ACE and leptin could interact to influence blood pressure, thereby linking the renin-angiotensin system and obesity. These mice are obese and diabetic but have normal 24 h mean arterial pressure. Our results show that plasma and lung ACE activities as well as ACE mRNA expression were significantly decreased in ob/ob mice. In agreement with these findings, the hypotensive effect produced by enalapril administration was attenuated in the obese mice. Plasma renin, angiotensinogen, angiotensin I, bradykinin, and angiotensin 1–7 were increased, whereas plasma angiotensin II concentration was unchanged in obese mice. Chronic infusion of leptin increased renin activity and angiotensin II concentration in both groups and increased ACE activity in ob/ob mice. Acute leptin infusion restored ACE activity in leptin-deficient mice. Moreover, the effect of an ACE inhibitor on blood pressure was not changed in ob/+ mice during leptin treatment but increased four times in obese mice. In summary, our findings show that the renin–angiotensin system is altered in ob/ob mice, with markedly reduced ACE activity, which suggests a possible connection between the renin–angiotensin system and leptin. These results point to an important interplay between the angiotensinergic and the leptinergic systems, which may play a role in the pathogenesis of obesity, hypertension, and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R, Peto R (2009) Body-mass index and cause-specifi c mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373:14

    Article  Google Scholar 

  2. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  Google Scholar 

  3. Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41:317–318

    CAS  PubMed  Google Scholar 

  4. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  5. Mark AL, Shaffer RA, Correia ML, Morgan DA, Sigmund CD, Haynes WG (1999) Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J Hypertens 17:1949–1953

    Article  CAS  PubMed  Google Scholar 

  6. Burgueno AL, Landa MS, Schuman ML, Alvarez AL, Carabelli J, Garcia SI, Pirola CJ (2007) Association between diencephalic thyroliberin and arterial blood pressure in agouti-yellow and ob/ob mice may be mediated by leptin. Metabolism 56:1439–1443

    Article  CAS  PubMed  Google Scholar 

  7. Swoap SJ (2001) Altered leptin signaling is sufficient, but not required, for hypotension associated with caloric restriction. Am J Physiol Heart Circ Physiol 281:H2473–H2479

    CAS  PubMed  Google Scholar 

  8. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  PubMed  Google Scholar 

  9. Haynes WG (2000) Interaction between leptin and sympathetic nervous system in hypertension. Curr Hypertens Rep 2:311–318

    Article  CAS  PubMed  Google Scholar 

  10. Rahmouni K, Morgan DA (2007) Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension 49:647–652

    Article  CAS  PubMed  Google Scholar 

  11. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  CAS  PubMed  Google Scholar 

  12. Goncalves AC, Tank J, Diedrich A, Hilzendeger A, Plehm R, Bader M, Luft FC, Jordan J, Gross V (2009) Diabetic hypertensive leptin receptor-deficient db/db mice develop cardioregulatory autonomic dysfunction. Hypertension 53:387–392

    Article  PubMed  Google Scholar 

  13. Bagi Z, Erdei N, Toth A, Li W, Hintze TH, Koller A, Kaley G (2005) Type 2 diabetic mice have increased arteriolar tone and blood pressure: enhanced release of COX-2-derived constrictor prostaglandins. Arterioscler Thromb Vasc Biol 25:1610–1616

    Article  CAS  PubMed  Google Scholar 

  14. Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44:1–80

    CAS  PubMed  Google Scholar 

  15. Fleming I (2006) Signaling by the angiotensin-converting enzyme. Circ Res 98:887–896

    Article  CAS  PubMed  Google Scholar 

  16. Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM, Lenfant M, Corvol P, Menard J (1996) Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest 97:839–844

    Article  CAS  PubMed  Google Scholar 

  17. Langley-Evans SC, Jackson AA (1995) Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp Biochem Physiol A Physiol 110:223–228

    Article  CAS  PubMed  Google Scholar 

  18. Hilzendeger AM, da Costa Goncalves AC, Plehm R, Diedrich A, Gross V, Pesquero JB, Bader M (2009) Autonomic dysregulation in ob/ob mice is improved by inhibition of angiotensin-converting enzyme. J Mol Med 88:383–390

    Article  PubMed  Google Scholar 

  19. Gross V, Tank J, Obst M, Plehm R, Blumer KJ, Diedrich A, Jordan J, Luft FC (2005) Autonomic nervous system and blood pressure regulation in RGS2-deficient mice. Am J Physiol Regul Integr Comp Physiol 288:R1134–R1142

    CAS  PubMed  Google Scholar 

  20. Bogan JS, McKee AE, Lodish HF (2001) Insulin-responsive compartments containing GLUT4 in 3 T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 21:4785–4806

    Article  CAS  PubMed  Google Scholar 

  21. Carmona AK, Schwager SL, Juliano MA, Juliano L, Sturrock ED (2006) A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay. Nat Protoc 1:1971–1976

    Article  CAS  PubMed  Google Scholar 

  22. Sabatini RA, Bersanetti PA, Farias SL, Juliano L, Juliano MA, Casarini DE, Carmona AK, Paiva AC, Pesquero JB (2007) Determination of angiotensin I-converting enzyme activity in cell culture using fluorescence resonance energy transfer peptides. Anal Biochem 363:255–262

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Burckle CA, Jan Danser AH, Muller DN, Garrelds IM, Gasc JM, Popova E, Plehm R, Peters J, Bader M, Nguyen G (2006) Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47:552–556

    Article  CAS  PubMed  Google Scholar 

  25. Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, Baltatu OC, Santos RA, Bader M (2008) Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967–973

    Article  CAS  PubMed  Google Scholar 

  26. Pontes FL Jr, Bacurau RF, Moraes MR, Navarro F, Casarini DE, Pesquero JL, Pesquero JB, Araujo RC, Picarro IC (2008) Kallikrein kinin system activation in post-exercise hypotension in water running of hypertensive volunteers. Int Immunopharmacol 8:261–266

    Article  CAS  PubMed  Google Scholar 

  27. Grundy SM (2007) Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab 92:399–404

    Article  CAS  PubMed  Google Scholar 

  28. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  CAS  PubMed  Google Scholar 

  29. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  30. Lindstrom P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J 7:666–685

    Google Scholar 

  31. Silvani A, Bastianini S, Berteotti C, Franzini C, Lenzi P, Lo Martire V, Zoccoli G (2009) Sleep modulates hypertension in leptin-deficient obese mice. Hypertension 53:251–255

    Article  CAS  PubMed  Google Scholar 

  32. Escobar E, Rodriguez-Reyna TS, Arrieta O, Sotelo J (2004) Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr Vasc Pharmacol 2:385–399

    Article  CAS  PubMed  Google Scholar 

  33. Santos EL, de Picoli SK, Guimaraes PB, Reis FC, Silva SM, Costa-Neto CM, Luz J, Pesquero JB (2008) Effect of angiotensin converting enzyme inhibitor enalapril on body weight and composition in young rats. Int Immunopharmacol 8:247–253

    Article  CAS  PubMed  Google Scholar 

  34. Jayasooriya AP, Mathai ML, Walker LL, Begg DP, Denton DA, Cameron-Smith D, Egan GF, McKinley MJ, Rodger PD, Sinclair AJ, Wark JD, Weisinger HS, Jois M, Weisinger RS (2008) Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc Natl Acad Sci USA 105:6531–6536

    Article  CAS  PubMed  Google Scholar 

  35. Sabatini RA, Guimaraes PB, Fernandes L, Reis FC, Bersanetti PA, Mori MA, Navarro A, Hilzendeger AM, Santos EL, Andrade MC, Chagas JR, Pesquero JL, Casarini DE, Bader M, Carmona AK, Pesquero JB (2008) ACE activity is modulated by kinin B2 receptor. Hypertension 51:689–695

    Article  CAS  PubMed  Google Scholar 

  36. Bader M (2001) Molecular interactions of vasoactive systems in cardiovascular damage. J Cardiovasc Pharmacol 38(Suppl 2):S7–S9

    CAS  PubMed  Google Scholar 

  37. Beltowski J, Wojcicka G, Borkowska E (2002) Human leptin stimulates systemic nitric oxide production in the rat. Obes Res 10:939–946

    Article  CAS  PubMed  Google Scholar 

  38. Sahin AS, Bariskaner H (2007) The mechanisms of vasorelaxant effect of leptin on isolated rabbit aorta. Fundam Clin Pharmacol 21:595–600

    Article  CAS  PubMed  Google Scholar 

  39. Beltowski J, Wojcicka G, Jamroz-Wisniewska A (2006) Role of nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) in the regulation of blood pressure by leptin in lean and obese rats. Life Sci 79:63–71

    Article  CAS  PubMed  Google Scholar 

  40. Shek EW, Brands MW, Hall JE (1998) Chronic leptin infusion increases arterial pressure. Hypertension 31:409–414

    CAS  PubMed  Google Scholar 

  41. Baskin DG, Seeley RJ, Kuijper JL, Lok S, Weigle DS, Erickson JC, Palmiter RD, Schwartz MW (1998) Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes 47:538–543

    Article  CAS  PubMed  Google Scholar 

  42. Mercer JG, Moar KM, Rayner DV, Trayhurn P, Hoggard N (1997) Regulation of leptin receptor and NPY gene expression in hypothalamus of leptin-treated obese (ob/ob) and cold-exposed lean mice. FEBS Lett 402:185–188

    Article  CAS  PubMed  Google Scholar 

  43. Kintscher U, Bruemmer D, Blaschke F, Unger T, Law RE (2003) p38 MAP kinase negatively regulates angiotensin II-mediated effects on cell cycle molecules in human coronary smooth muscle cells. Biochem Biophys Res Commun 305:552–556

    Article  CAS  PubMed  Google Scholar 

  44. Skurk T, van Harmelen V, Blum WF, Hauner H (2005) Angiotensin II promotes leptin production in cultured human fat cells by an ERK1/2-dependent pathway. Obes Res 13:969–973

    Article  CAS  PubMed  Google Scholar 

  45. Masuo K, Mikami H, Ogihara T, Tuck ML (2001) Weight reduction and pharmacologic treatment in obese hypertensives. Am J Hypertens 14:530–538

    Article  CAS  PubMed  Google Scholar 

  46. Rahmouni K, Correia ML, Haynes WG, Mark AL (2005) Obesity-associated hypertension: new insights into mechanisms. Hypertension 45:9–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Wolf-Eberhard Siems and Nils Dietrich for their help in measuring ACE activity.

Sources of funding

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Deutsche Akademische Austauschdienst (DAAD/PROBRAL), and the Deutsche Forschungsgemeinschaft (BA 1374/16-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Bosco Pesquero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilzendeger, A.M., Morais, R.L., Todiras, M. et al. Leptin regulates ACE activity in mice. J Mol Med 88, 899–907 (2010). https://doi.org/10.1007/s00109-010-0649-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0649-7

Keywords

Navigation