Skip to main content
Log in

Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts

  • Original article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Radiation-induced fibrosis (RIF) is a long-term adverse effect of curative radiotherapy; however, the distinct molecular mechanisms of RIF in neighboring normal tissue are not fully understood. We investigated the mechanisms underlying radiation-induced fibroblast differentiation into myofibroblasts. Lung fibroblasts produced reactive oxygen species (ROS) immediately after irradiation, the level of which remained increased for 24 h. The NADPH oxidase inhibitor, diphenyleneiodonium (DPI), suppressed ROS production and significantly decreased the radiation-induced expression of α-smooth muscle actin (α-SMA) and fibronectin (FN). The mRNA and protein expression of Nox4 was increased by radiation, and siRNA knockdown of Nox4 reduced α-SMA and FN levels. Increased phosphorylation of p38MAPK, Erk, and PI3k/Akt was observed after irradiation. Inhibitors of p38 MAPK and Akt, but not of Erk, reduced radiation-induced fibroblast differentiation and Nox4 expression. Notably, DPI partially decreased phosphorylation of p38MAPK and Akt, suggesting that p38MAPK, Akt, and Nox4 may cooperate in a positive feedback loop. Nox4 expression was also increased during bleomycin-induced fibroblast differentiation, and downregulation of Nox4 reduced α-SMA levels and extracellular matrix (ECM) accumulation. These results demonstrate that interfering Nox4 activation can be a potential strategy to disrupt fibrotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller KL, Shafman TD, Marks LB (2004) A practical approach to pulmonary risk assessment in the radiotherapy of lung cancer. Semin Radiat Oncol 14:298–307

    Article  PubMed  Google Scholar 

  2. Kim R, Meyer KC (2008) Therapies for interstitial lung disease: past, present and future. Ther Adv Respir Dis 2:319–338

    Article  PubMed  Google Scholar 

  3. Neurohr C, Behr J (2009) Diagnosis and therapy of interstitial lung diseases. Dtsch Med Wochenschr 134:524–529

    Article  CAS  PubMed  Google Scholar 

  4. Scotton CJ, Chambers RC (2007) Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132:1311–1321

    Article  PubMed  Google Scholar 

  5. Vozenin-Brotons MC, Milliat F, Sabourin JC, de Gouville AC, Francois A, Lasser P, Morice P, Haie-Meder C, Lusinchi A, Antoun S, Bourhis J, Mathe D, Girinsky T, Aigueperse J (2003) Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. Int J Radiat Oncol Biol Phys 56:561–572

    Article  CAS  PubMed  Google Scholar 

  6. Tabata C, Kadokawa Y, Tabata R, Takahashi M, Okoshi K, Sakai Y, Mishima M, Kubo H (2006) All-trans-retinoic acid prevents radiation- or bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med 174:1352–1360

    Article  CAS  PubMed  Google Scholar 

  7. Chae HJ, Chae SW, Kang JS, Bang BG, Han JI, Moon SR, Park RK, So HS, Jee KS, Kim HM, Kim HR (1999) Effect of ionizing radiation on the differentiation of ROS 17/2.8 osteoblasts through free radicals. J Radiat Res (Tokyo) 40:323–335

    Article  CAS  Google Scholar 

  8. Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Grone HJ, Lipson KE, Huber PE (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201:925–935

    Article  CAS  PubMed  Google Scholar 

  9. Giri SN, Hyde DM, Hollinger MA (1993) Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. Thorax 48:959–966

    Article  CAS  PubMed  Google Scholar 

  10. Rabbani ZN, Anscher MS, Zhang X, Chen L, Samulski TV, Li CY, Vujaskovic Z (2003) Soluble TGFbeta type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. Int J Radiat Oncol Biol Phys 57:563–572

    Article  CAS  PubMed  Google Scholar 

  11. Li M, Ping G, Plathow C, Trinh T, Lipson KE, Hauser K, Krempien R, Debus J, Abdollahi A, Huber PE (2006) Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells. BMC Cancer 6:79

    Article  PubMed  Google Scholar 

  12. Zou CG, Gao SY, Zhao YS, Li SD, Cao XZ, Zhang Y, Zhang KQ (2009) Homocysteine enhances cell proliferation in hepatic myofibroblastic stellate cells. J Mol Med 87:75–84

    Article  CAS  PubMed  Google Scholar 

  13. Shen WL, Gao PJ, Che ZQ, Ji KD, Yin M, Yan C, Berk BC, Zhu DL (2006) NAD(P)H oxidase-derived reactive oxygen species regulate angiotensin-II induced adventitial fibroblast phenotypic differentiation. Biochem Biophys Res Commun 339:337–343

    Article  CAS  PubMed  Google Scholar 

  14. Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB (2005) Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 16:667–675

    Article  CAS  PubMed  Google Scholar 

  15. Qi S, den Hartog GJ, Bast A (2009) Superoxide radicals increase transforming growth factor-beta1 and collagen release from human lung fibroblasts via cellular influx through chloride channels. Toxicol Appl Pharmacol 237:111–118

    Article  CAS  PubMed  Google Scholar 

  16. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61:3894–3901

    CAS  PubMed  Google Scholar 

  17. Narayanan PK, Goodwin EH, Lehnert BE (1997) Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57:3963–3971

    CAS  PubMed  Google Scholar 

  18. Collins-Underwood JR, Zhao W, Sharpe JG, Robbins ME (2008) NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic Biol Med 45:929–938

    Article  CAS  PubMed  Google Scholar 

  19. Masamune A, Watanabe T, Kikuta K, Satoh K, Shimosegawa T (2008) NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 294:G99–G108

    Article  CAS  PubMed  Google Scholar 

  20. Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72

    Article  CAS  PubMed  Google Scholar 

  21. Vejrazka M, Micek R, Stipek S (2005) Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim Biophys Acta 1722:143–147

    CAS  PubMed  Google Scholar 

  22. Riganti C, Costamagna C, Bosia A, Ghigo D (2006) The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress. Toxicol Appl Pharmacol 212:179–187

    Article  CAS  PubMed  Google Scholar 

  23. Sugiura H, Ichikawa T, Liu X, Kobayashi T, Wang XQ, Kawasaki S, Togo S, Kamio K, Mao L, Ann Y, Ichinose M, Rennard SI (2009) N-acetyl-l-cysteine inhibits TGF-beta1-induced profibrotic responses in fibroblasts. Pulm Pharmacol Ther 22:487–491

    Article  CAS  PubMed  Google Scholar 

  24. Felton VM, Borok Z, Willis BC (2009) N-acetylcysteine inhibits alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 297:L805–L812

    Article  CAS  PubMed  Google Scholar 

  25. Hancock JT, Jones OT (1987) The inhibition by diphenyleneiodonium and its analogues of superoxide generation by macrophages. Biochem J 242:103–107

    CAS  PubMed  Google Scholar 

  26. van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44:938–955

    Article  PubMed  Google Scholar 

  27. Ichiki T, Takeda K, Tokunou T, Funakoshi Y, Ito K, Iino N, Takeshita A (2001) Reactive oxygen species-mediated homologous downregulation of angiotensin II type 1 receptor mRNA by angiotensin II. Hypertension 37:535–540

    CAS  PubMed  Google Scholar 

  28. Li J, Stouffs M, Serrander L, Banfi B, Bettiol E, Charnay Y, Steger K, Krause KH, Jaconi ME (2006) The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17:3978–3988

    Article  CAS  PubMed  Google Scholar 

  29. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    Article  CAS  PubMed  Google Scholar 

  30. Ismail S, Sturrock A, Wu P, Cahill B, Norman K, Huecksteadt T, Sanders K, Kennedy T, Hoidal J (2009) NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3. Am J Physiol Lung Cell Mol Physiol 296:L489–L499

    Article  CAS  PubMed  Google Scholar 

  31. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081

    Article  CAS  PubMed  Google Scholar 

  32. Zhang QS, Maddock DA, Chen JP, Heo S, Chiu C, Lai D, Souza K, Mehta S, Wan YS (2001) Cytokine-induced p38 activation feedback regulates the prolonged activation of AKT cell survival pathway initiated by reactive oxygen species in response to UV irradiation in human keratinocytes. Int J Oncol 19:1057–1061

    CAS  PubMed  Google Scholar 

  33. Yamamori T, Inanami O, Sumimoto H, Akasaki T, Nagahata H, Kuwabara M (2002) Relationship between p38 mitogen-activated protein kinase and small GTPase Rac for the activation of NADPH oxidase in bovine neutrophils. Biochem Biophys Res Commun 293:1571–1578

    Article  CAS  PubMed  Google Scholar 

  34. Jinlian L, Yingbin Z, Chunbo W (2007) p38 MAPK in regulating cellular responses to ultraviolet radiation. J Biomed Sci 14:303–312

    Article  PubMed  Google Scholar 

  35. Manea A, Manea SA, Gafencu AV, Raicu M, Simionescu M (2008) AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol 28:878–885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Nuclear Research & Development Program of the Korea Science and Engineering Foundation (KOSEF), funded by the Korean government (MEST).

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Young Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Ahn, JY., Lim, MJ. et al. Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts. J Mol Med 88, 807–816 (2010). https://doi.org/10.1007/s00109-010-0622-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0622-5

Keywords

Navigation