Skip to main content
Log in

p38 MAPK in regulating cellular responses to ultraviolet radiation

  • Published:
Journal of Biomedical Science

Abstract

Solar ultraviolet (UV) radiation is a major environmental factor that causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. p38 mitogen activated protein kinase (MAPK) are strongly activated by UV radiation, and play important roles in regulating cellular responses to UV. In this review, we examine the role played by p38 MAPK in mediating UV-induced cell cycle, apoptosis, inflammation, and skin tanning response. We review the role played by p38 MAPK in transcriptional regulation of key downstream genes that have been implicated in the regulation of cellular responses to UV radiation. Understanding this will undoubtedly help in the prevention and control of UV-induced damage and the development of novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Gruijl F.R. (2000) Photocarcinogenesis: UVA vs. UVB Methods Enzymol. 319:359–366

    Article  PubMed  Google Scholar 

  2. Matsui M.S., DeLeo V.A. (1991) Longwave ultraviolet radiation and promotion of skin cancer. Cancer Cells 3:8–12

    PubMed  CAS  Google Scholar 

  3. de Gruijl F.R., Sterenborg H.J., Forbes P.D., Davies R.E., Cole C., Kelfkens G., van Weelden H., Slaper H., van der Leun J.C. (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res. 53:53–60

    PubMed  Google Scholar 

  4. Beissert S., Schwarz T. (1999) Mechanisms involved in ultraviolet light-induced immunosuppression. J. Invest. Dermatol. Symp. Proc. 4:61–64

    CAS  Google Scholar 

  5. Fisher G.J., Datta S.C., Talwar H.S., Wang Z.Q., Varani J., Kang S., Voorhees J.J. (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    PubMed  CAS  Google Scholar 

  6. Whitmarsh A.J., Davis R.J. (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 74:589–607

    PubMed  CAS  Google Scholar 

  7. Bachelor M.A., Cooper S.J., Sikorski E.T., Bowden G.T. (2005) Inhibition of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase decreases UVB-induced activator protein-1 and cyclooxygenase-2 in a SKH-1 hairless mouse model. Mol. Cancer Res. 3:90–99

    PubMed  CAS  Google Scholar 

  8. Black H.S., de Gruijl F.R., Forbes P.D., Cleaver J.E., Ananthaswamy H.N., de Fabo E.C., Ullrich S.E., Tyrrell R.M. (1997) Photocarcinogenesis: an overview. J. Photochem. Photobiol. B 40:29–47

    PubMed  CAS  Google Scholar 

  9. Ananthaswamy H.N., Pierceall W.E. (1992) Molecular alterations in human skin tumors. Prog. Clin. Biol. Res. 376:61–84

    PubMed  CAS  Google Scholar 

  10. Katiyar S.K., Perez A., Mukhtar H. (2000) Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA. Clin. Cancer Res. 10:3864–3869

    Google Scholar 

  11. Katiyar S.K., Afaq F., Azizuddin K., Mukhtar H. (2001) Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate. Toxicol. Appl. Pharmacol. 176:110–117

    PubMed  CAS  Google Scholar 

  12. Katiyar S.K., Afaq F., Perez A., Mukhtar H. (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22:287–294

    PubMed  CAS  Google Scholar 

  13. Sander C.S., Chang H., Hamm F., Elsner P., Thiele J.J. (2004) Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int. J. Dermatol. 43:326–335

    PubMed  CAS  Google Scholar 

  14. Ichihashi M., Ueda M., Budiyanto A., Bito T., Oka M., Fukunaga M., Tsuru K., Hotikawa T. (2003) UV-induced skin damage. Toxicology 189:21–39

    PubMed  CAS  Google Scholar 

  15. Cerutti P.A. (1985) Prooxidant states and tumor promotion. Science 227:375–381

    PubMed  CAS  Google Scholar 

  16. Peus D., Vasa R.A., Beyerle A., Meves A., Krautmacher C., Pittelkow M.R. (1999) UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J. Invest. Dermatol. 112:751–756

    PubMed  CAS  Google Scholar 

  17. Kabuyama Y., Homma M.K., Sekimata M., Homma Y. (2001) Wavelength-specific activation of MAP kinase family proteins by monochromatic UV irradiation. Photochem. Photobiol. 73:147–152

    PubMed  CAS  Google Scholar 

  18. Ding M., Li J., Leonard S.S., Shi X., Costa M., Castranova V., Vallyathan V., Huang C. (2002) Differential role of hydrogen peroxide in UV-induced signal transduction. Mol. Cell Biochem. 234–235:81–90

    PubMed  Google Scholar 

  19. Gotoh Y., Cooper J.A. (1998) Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J. Biol. Chem. 273:17477–17482

    PubMed  CAS  Google Scholar 

  20. Seo M., Lee Y.I., Cho C.H., Bae C.D., Kim I.H., Juhnn Y.S. (2002) Bi-directional regulation of UV-induced activation of p38 kinase and c-Jun N-terminal kinase by G protein βγ-subunits. J. Biol. Chem. 277:24197–24203

    PubMed  CAS  Google Scholar 

  21. Seo M., Cho C.H., Lee Y.I., Shin E.Y., Park D., Bae C.D., Lee J.W., Lee E.S., Juhnn Y.S. (2004) Cdc42-dependent mediation of UV-induced p38 activation by G protein βγ-subunits. J. Biol. Chem. 279:17366–17375

    PubMed  CAS  Google Scholar 

  22. Derijard B., Raingeaud J., Barrett T., Wu I.H., Han J., Ulevitch R.J., Davis R.J. (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 267:682–685

    PubMed  CAS  Google Scholar 

  23. Stein B., Brady H., Yang M.X., Young D.B., Barbosa M.S. (1996) Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade. J. Biol. Chem. 271:11427–11433

    PubMed  CAS  Google Scholar 

  24. Rouse J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., Nebreda A.R. (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037

    PubMed  CAS  Google Scholar 

  25. McLaughlin M.M., Kumar S., McDonnell P.C., Van Hom S., Lee J.C., Livi G.P., Young P.R. (1996) Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J. Biol. Chem. 271:8488–8492

    PubMed  CAS  Google Scholar 

  26. Waskiewicz A.J., Flynn A., Proud C.G., Cooper J.A. (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16:1909–1920

    PubMed  CAS  Google Scholar 

  27. Fukunaga R., Hunter T. (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16:1921–1933

    PubMed  CAS  Google Scholar 

  28. New L., Jiang Y., Zhao M., Liu K., Zhu W., Flood L.J., Kato Y., Parry G.C., Han J. (1998) PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17:3372–3384

    PubMed  CAS  Google Scholar 

  29. Deak M., Clifton A.D., Lucocq L.M., Alessi D.R. (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17:4426–4441

    PubMed  CAS  Google Scholar 

  30. Iordanov M., Bender K., Ade T., Schmid W., Sachsenmaier C., Engel K., Gaestel M., Rahmsdorf H.J., Herrlich P. (1997) CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. EMBO J. 16:1009–1022

    PubMed  CAS  Google Scholar 

  31. Robinson M.J., Cobb M.H. (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9:180–186

    PubMed  CAS  Google Scholar 

  32. Martin-Blanco E. (2000) p38 MAPK signaling cascades: ancient roles and new functions. Bioessays 22:637–645

    PubMed  CAS  Google Scholar 

  33. Maltzman W., Czyzyk L. (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4:1689–1694

    PubMed  CAS  Google Scholar 

  34. Ouhtit A., Muller H.K., Davis D.W., Ullrich S.E., McConkey D., Ananthaswamy H.N. (2000) Temporal events in skin injury and the early adaptive responses in ultraviolet-irradiated mouse skin. Am. J. Pathol. 156:201–207

    PubMed  CAS  Google Scholar 

  35. Smith M.L., Fornace A.J. Jr. (1997) p53-mediated protective responses to UV irradiation. Proc. Natl. Acad. Sci. USA 94:12255–12257

    PubMed  CAS  Google Scholar 

  36. Hall P.A., McKee P.H., Menage H.D., Dover R., Lane D.P. (1993) High levels of p53 protein in UV-irradiated normal human skin. Oncogene 8:203–207

    PubMed  CAS  Google Scholar 

  37. McKay B.C., Francis M.A., Rainbow A.J. (1997) Wildtype p53 is required for heat shock and ultraviolet light enhanced repair of a UV-damaged reporter gene. Carcinogenesis 18:245–249

    PubMed  CAS  Google Scholar 

  38. Meek D.W. (1998) Multisite phosphorylation and the integration of stress signals at p53. Cell Signal. 10:159–166

    PubMed  CAS  Google Scholar 

  39. Giaccia A.J., Kastan M.B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12:2973–2983

    PubMed  CAS  Google Scholar 

  40. Sakaguchi K., Herrera J.E., Saito S., Miki T., Bustin M., Vassilev A., Anderson C.W., Appella E. (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841

    PubMed  CAS  Google Scholar 

  41. Shieh S.Y., Taya Y., Prives C. (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, ser20, requires tetramerization. EMBO J. 18:1815–1823

    PubMed  CAS  Google Scholar 

  42. Unger T., Sionov R.V., Moallem E., Yee C.L., Howley P.M., Oren M., Haupt Y. (1999) Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18:3205–3212

    PubMed  CAS  Google Scholar 

  43. She Q.B., Chen N., Dong Z. (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J. Biol. Chem. 275:20444–20449

    PubMed  CAS  Google Scholar 

  44. Bulavin D.V., Saito S., Hollander M.C., Sakaguchi K., Anderson C.W., Appella E., Fornace A.J. Jr. (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18:6845–6854

    PubMed  CAS  Google Scholar 

  45. Huang C., Ma W.Y., Maxiner A., Sun Y., Dong Z. (1999) p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J. Biol. Chem. 274:12229–12235

    PubMed  CAS  Google Scholar 

  46. Keller D., Zeng X., Li X., Kapoor M., Iordanov M.S., Taya Y., Lozano G., Magun B., Lu H. (1999) The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem. Biophys. Res. Commun. 261:464–471

    PubMed  CAS  Google Scholar 

  47. Devary Y., Gottlieb R.A., Lau L.F., Karin M. (1991) Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell Biol. 11:2804–2811

    PubMed  CAS  Google Scholar 

  48. Angel P., Karin M. (1991) The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim. Biophys. Acta 1072:129–157

    PubMed  CAS  Google Scholar 

  49. Cooper S.J., MacGowan J., Ranger-Moore J., Young M.R., Colburn N.H., Bowden G.T. (2003) Expression of dominant negative c-jun inhibits ultraviolet B-induced squamous cell carcinoma number and size in an SKH-1 hairless mouse model. Mol. Cancer Res. 1:848–854

    PubMed  CAS  Google Scholar 

  50. Karin M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270:16483–16486

    PubMed  CAS  Google Scholar 

  51. Whitmarsh A.J., Davis R.J. (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 74:589–607

    PubMed  CAS  Google Scholar 

  52. Price M.A., Cruzalegui F.H., Treisman R. (1996) The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. EMBO J. 15:6552–6563

    PubMed  CAS  Google Scholar 

  53. Chen W., Bowden G.T. (1999) Activation of p38 MAP kinase and ERK are required for ultraviolet-B induced c-fos gene expression in human keratinocytes. Oncogene 18:7469–7476

    PubMed  CAS  Google Scholar 

  54. Silvers A.L., Bachelor M.A., Bowden G.T. (2003) The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression. Neoplasia 5:319–329

    PubMed  CAS  Google Scholar 

  55. Tanos T., Marinissen M.J., Leskow F.C., Hochbaum D., Martinetto H., Gutkind J.S., Coso O.A. (2005) Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J. Biol. Chem. 280:18842–18852

    PubMed  CAS  Google Scholar 

  56. Chen W., Bowden G.T. (2000) Role of p38 mitogen-activated protein kinases in ultraviolet-B irradiation-induced activator protein 1 activation in human keratinocytes. Mol. Carcinog. 28:196–202

    PubMed  CAS  Google Scholar 

  57. Bodero A.J., Ye R., Lees-Miller S.P. (2003) UV-light induces p38 MAPK-dependent phosphorylation of Bcl10. Biochem. Biophys. Res. Commun. 301:923–926

    PubMed  CAS  Google Scholar 

  58. Kovarik P., Stoiber D., Eyers P.A., Menghini R., Neininger A., Gaestel M., Cohen P., Decker T. (1999) Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proc. Natl. Acad. Sci. USA 96:13956–13961

    PubMed  CAS  Google Scholar 

  59. Kovarik P., Mangold M., Ramsauer K., Heidari H., Steinborn R., Zotter A., Levy D.E., Muller M., Decker T. (2001) Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J. 20:91–100

    PubMed  CAS  Google Scholar 

  60. Nurse P. (1997) Checkpoint pathways come of age. Cell 91:865–867

    PubMed  CAS  Google Scholar 

  61. Bartek J., Lukas J. (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490:117–122

    PubMed  CAS  Google Scholar 

  62. Gottlieb T.M., Oren M. (1996) p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287:77–102

    PubMed  Google Scholar 

  63. Zhan Q., Antinore M.J., Wang X.W. (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18:2892–2900

    PubMed  CAS  Google Scholar 

  64. Bulavin D.V., Higashimoto Y., Popoff I.J., Gaarde W.A., Basrur V., Potapova O., Appella E., Fornace A.J. Jr. (2001) Initiation of a G2/M checkpoint after UV radiation requires p38 kinase. Nature (Lond.) 411:102–107

    CAS  Google Scholar 

  65. Norbury C., Blow J., Nurse P. (1991) Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 10:3321–3329

    PubMed  CAS  Google Scholar 

  66. Parker L.L., Piwnica-Worms H. (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257:1955–1957

    PubMed  CAS  Google Scholar 

  67. Mueller P., Coleman T., Kumagai A., Dunphy W. (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270:86–90

    PubMed  CAS  Google Scholar 

  68. Liu F., Stanton J.J., Wu Z., Piwnica-Worms H. (1997) The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17:571–583

    PubMed  CAS  Google Scholar 

  69. Gautier J., Solomon M.J., Booher R.N., Bazan J.F., Kirschner M.W. (1991) cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67:197–211

    PubMed  CAS  Google Scholar 

  70. Kumagai A., Dunphy W. (1991) The cdc25 protein controls tyrosine dephosphorylation in a cell-free system. Cell 64:903–914

    PubMed  CAS  Google Scholar 

  71. Strausfeld U., Labbe J.C., Fesquet D., Cavadore J.C., Picard A., Sadhu K., Russell P., Doree M. (1991) Dephosphorylation and activation of a p34cdc2/cyclin B complex in␣vitro by human CDC25 protein. Nature 351:242–245

    PubMed  CAS  Google Scholar 

  72. Galaktionov K., Beach D. (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194

    PubMed  CAS  Google Scholar 

  73. Nagata A., Igarashi M., Jinno S., Suto K., Okayama H. (1991) An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol. 3:959–968

    PubMed  CAS  Google Scholar 

  74. Sadhu K., Reed S.I., Richardson H., Russell P. (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc. Natl. Acad. Sci. USA 87:5139–5143

    PubMed  CAS  Google Scholar 

  75. Donzelli M., Draetta G.F. (2003) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4:671–677

    PubMed  CAS  Google Scholar 

  76. Davezac N., Baldin V., Gabrielli B., Forrest A., Theis-Febvre N., Yashida M., Ducommun B. (2000) Regulation of CDC25B phosphatases subcellular localization. Oncogene 19:2179–2185

    PubMed  CAS  Google Scholar 

  77. Forrest A., Gabrielli B. (2001) Cdc25B activity is regulated by 14-3-3. Oncogene 20:4393–4401

    PubMed  CAS  Google Scholar 

  78. Lindqvist A., Kallstrom H., Karlsson Rosenthal C. (2004) Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J. Cell Sci. 117:4979–4990

    PubMed  CAS  Google Scholar 

  79. Manke I.A., Nguyen A., Lim D., Stewart M.Q., Elia A.E., Yaffe M.B. (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17:37–48

    PubMed  CAS  Google Scholar 

  80. Kulms D., Schwarz T. (2002) Molecular mechanisms involved in UV-induced apoptotic cell death. Skin Pharmacol. Appl. Skin Physiol. 15:342–347

    PubMed  CAS  Google Scholar 

  81. Kim D.S., Hwang E.S., Lee J.E., Kim S.Y., Park K.C. (2003) Sphingosine-1-phosphate promotes mouse melanocyte survival via ERK and Akt activation. Cell. Signal. 15:919–926

    PubMed  CAS  Google Scholar 

  82. Shimizu H., Banno Y., Sumi N., Naganawa T., Kitajima Y., Nozawa Y. (1999) Activation of p38 mitogen-activated protein kinase and caspases in UVB-induced apoptosis of human keratinocyte HaCaT cells. J Invest. Dermatol. 112:769–774

    PubMed  CAS  Google Scholar 

  83. Assefa Z., Vantieghem A., Garmyn M., Declercq W., Vandenabeele P., Vandenheede J.R., Bouillon R., Merlevede W., Agostinis P. (2000) p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis. J. Biol. Chem. 275:21416–21421

    PubMed  CAS  Google Scholar 

  84. Van Laethem A., Van Kelst S., Lippens S., Declercq W., Vandenabeele P., Janssens S., Vandenheede J.R., Garmyn M., Agostinis P. (2004) Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J. 18:1946–1948

    PubMed  Google Scholar 

  85. Chen H.Y., Zhu L., Zhan S.M., Han Z.W., Du W., Wang Y.J., Cui R.Y., Wang C.B. (2005) Polypeptide from Chlamys farreri inhibits murine thymocytes apoptosis and modulates UVB induced signaling pathway activation. Life Sci. 77:768–779

    PubMed  CAS  Google Scholar 

  86. Hildesheim J., Awwad R.T., Fornace A.J. Jr. (2004) p38 mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses. J. Invest. Dermatol. 122:497–502

    PubMed  CAS  Google Scholar 

  87. Papoutsaki M., Moretti F., Lanza M., Marinari B., Sartorelli V., Guerrini L., Chimenti S., Levrero M., Costanzo A. (2005) A p38-dependent pathway regulates DeltaNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of keratinocytes. Oncogene 24:6970–6975

    PubMed  CAS  Google Scholar 

  88. Chouinard N., Valerie K., Rouabhia M., Huot J. (2002) UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem. J. 365:133–145

    PubMed  CAS  Google Scholar 

  89. Ivanov V.N., Ronai Z. (2000) p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-kappaB activity and Fas expression. Oncogene 19:3003–3012

    PubMed  CAS  Google Scholar 

  90. Nemoto S., Xiang J., Huang S., Lin A. (1998) Induction of apoptosis by SB202190 through inhibition of p38β mitogen-activated protein kinase. J. Biol. Chem. 273:16415–16420

    PubMed  CAS  Google Scholar 

  91. Bachelor M.A., Bowden G.T. (2004) Ultraviolet A-induced modulation of bcl-xl by p38 MAPK in human keratinocytes: post-translational regulation through the 3’untranslated region. J. Biol. Chem. 279:42658–42668

    PubMed  CAS  Google Scholar 

  92. Konnikov N., Pincus S.H., Dinarello C.A. (1989) Elevated plasma interleukin-1 levels in humans following ultraviolet light therapy for psoriasis. J. Invest. Dermatol. 92:235–239

    PubMed  CAS  Google Scholar 

  93. Kock A., Schwarz T., Kirnbauer R., Urbanski A., Perry Ansel J.C., Luger T.A. (1990) Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J. Exp. Med. 172:1609–1614

    PubMed  CAS  Google Scholar 

  94. Kirnbauer R., Kock A., Neuner P., Forster E., Krutmann J., Urbanski A., Schauer E., Ansel J.C., Schwarz T., Luger T.A. (1991) Regulation of epidermal cell interleukin-6 production by UV light and corticosteroids. J. Invest. Dermatol. 96:484–489

    PubMed  CAS  Google Scholar 

  95. Kondo S., Kono T., Sauder D.N., McKenzie R. (1993) IL-8 gene expression and production in human keratinocytes and their modulation by UVB. J. Invest. Dermatol. 101:690–694

    PubMed  CAS  Google Scholar 

  96. Kondo S. (1999) The roles of keratinocyte-derived cytokines in the epidermis and their possible responses to UVA-irradiation. J. Invest. Dermatol. Symp. Proc. 4:177–183

    CAS  Google Scholar 

  97. Allen M., Svensson L., Roach M., Hambor J., McNeish J., Gabel C.A. (2000) Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J. Exp. Med. 191:859–870

    PubMed  CAS  Google Scholar 

  98. Kim A.L., Labasi J.M., Zhu Y., Tang X., McClure K., Gabel C.A., Athar M., Bickers D.R. (2005) Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice. J. Invest. Dermatol. 124:1318–1325

    PubMed  CAS  Google Scholar 

  99. Vane J.R., Bakhle Y.S., Botting R.M. (1998) Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38:97–120

    PubMed  CAS  Google Scholar 

  100. Chen W., Tang Q., Gonzales M.S., Bowden G.T. (2001) Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene 20:3921–3926

    PubMed  CAS  Google Scholar 

  101. Buckman S.Y., Gresham A., Hale P., Hruza G., Anast J., Masferrer J., Pentland A.P. (1998) COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19:723–729

    PubMed  CAS  Google Scholar 

  102. Wilgus T.A., Koki A.T., Zweifel B.S., Kusewitt D.F., Rubal P.A., Oberyszyn T.M. (2003) Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment. Mol. Carcinog. 38:49–58

    PubMed  CAS  Google Scholar 

  103. Wilgus T.A., Parrett M.L., Ross M.S., Tober K.L., Robertson F.M., Oberyszyn T.M. (2002) Inhibition of ultraviolet light B-induced cutaneous inflammation by a specific cyclooxygenase-2 inhibitor. Adv. Exp. Med. Biol. 507:85–92

    PubMed  CAS  Google Scholar 

  104. Bachelor M.A., Silvers A.L., Bowden G.T. (2002) The role of p38 in UVA induced cyclooxygenase-2 expression in the human keratinocyte cell line, HaCaT. Oncogene 21:7092–7099

    PubMed  CAS  Google Scholar 

  105. Galibert M.D., Carreira S., Goding C.R. (2001) The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. EMBO J. 20:5022–5031

    PubMed  CAS  Google Scholar 

  106. Corre S., Primot A., Sviderskaya E., Bennett D.C., Vaulont S., Goding C.R., Galibert M.D. (2004) UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p38-activated upstream stimulating factor-1 (USF-1) J. Biol. Chem. 279:51226–51233

    PubMed  CAS  Google Scholar 

  107. Abdel-Malek Z., Swope V.B., Suzuki I., Akcali C., Harriger M.D., Boyce S.T., Urabe K., Hearing V.J. (1995) Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. 92:1789–1793

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work presented here was funded by the National Science Natural foundation of China (No. 30471458) and Science Natural Foundation of Shandong province (No. Y2003c02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Chunbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jinlian, L., Yingbin, Z. & Chunbo, W. p38 MAPK in regulating cellular responses to ultraviolet radiation. J Biomed Sci 14, 303–312 (2007). https://doi.org/10.1007/s11373-007-9148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9148-4

Keywords

Navigation