Skip to main content

Advertisement

Log in

Thromboxane synthase expression and thromboxane A2 production in the atherosclerotic lesion

  • Original article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Thromboxane A2 (TXA2) is a potent prothrombotic and immune modulating lipid mediator, which is implicated in cardiovascular diseases, in particular, atherosclerotic lesion development and thrombogenicity. Here, we tested the hypothesis that thromboxane synthase (TXAS), the obligate enzyme required to synthesize TXA2, is expressed within the human atherosclerotic lesion, thus potentially contributing to TXA2 synthesis and disease development. In an animal study, different atherosclerosis-prone mouse strains were investigated and compared with control mice. In a patient study (n = 134), endarterectomies of carotid atherosclerotic lesions were compared with non-atherosclerotic arteries (n = 11). Expression of TXAS was evaluated by real-time quantitative reverse transcription PCR and immunohistochemistry. TXAS mRNA expression was increased within the vascular wall in mouse models of atherosclerosis with advanced lesions. In humans, TXAS was expressed in the atherosclerotic lesion, associated with increased inflammatory cells, in particular M2 polarized macrophages, and increased in atherosclerotic lesions of patients with recent symptoms of thrombotic events. Production of TXA2 by plaque tissue, verified by gas chromatography–mass spectrometry, increased after addition of arachidonic acid or lipopolysaccharide, and was inhibited by the TXAS inhibitor furegrelate. The findings suggest that intraplaque TXA2 generation may contribute to the development of atherosclerosis and its thrombotic complications in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  2. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108:1772–1778

    Article  PubMed  Google Scholar 

  3. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  4. Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–2998

    Article  CAS  PubMed  Google Scholar 

  5. Oates JA, FitzGerald GA, Branch RA, Jackson EK, Knapp HR, Roberts LJ 2nd (1988) Clinical implications of prostaglandin and thromboxane A2 formation (2). N Engl J Med 319:761–767

    CAS  PubMed  Google Scholar 

  6. Oates JA, FitzGerald GA, Branch RA, Jackson EK, Knapp HR, Roberts LJ 2nd (1988) Clinical implications of prostaglandin and thromboxane A2 formation (1). N Engl J Med 319:689–698

    Article  CAS  PubMed  Google Scholar 

  7. Patrono C, Coller B, FitzGerald GA, Hirsh J, Roth G (2004) Platelet-active drugs: the relationships among dose, effectiveness, and side effects: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:234S–264S

    Article  CAS  PubMed  Google Scholar 

  8. Shen RF, Tai HH (1998) Thromboxanes: synthase and receptors. J Biomed Sci 5:153–172

    Article  CAS  PubMed  Google Scholar 

  9. Yu IS, Lin SR, Huang CC, Tseng HY, Huang PH, Shi GY, Wu HL, Tang CL, Chu PH, Wang LH, Wu KK, Lin SW (2004) TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood 104:135–142

    Article  CAS  PubMed  Google Scholar 

  10. Samuelsson B, Hamberg M, Malmsten C, Svensson J (1976) The role of prostaglandin endoperoxides and thromboxanes in platelet aggregation. Adv Prostaglandin Thromboxane Res 2:737–746

    CAS  PubMed  Google Scholar 

  11. Takayama K, Yuhki K, Ono K, Fujino T, Hara A, Yamada T, Kuriyama S, Karibe H, Okada Y, Takahata O et al (2005) Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat Med 11:562–566

    Article  CAS  PubMed  Google Scholar 

  12. Needleman P, Moncada S, Bunting S, Vane JR, Hamberg M, Samuelsson B (1976) Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261:558–560

    Article  CAS  PubMed  Google Scholar 

  13. Fitzgerald GA (2004) Coxibs and cardiovascular disease. N Engl J Med 351:1709–1711

    Article  CAS  PubMed  Google Scholar 

  14. Mehta J, Roberts A (1983) Human vascular tissues produce thromboxane as well as prostacyclin. Am J Physiol 244:R839–R844

    CAS  PubMed  Google Scholar 

  15. Pawlowski NA, Kaplan G, Hamill AL, Cohn ZA, Scott WA (1983) Arachidonic acid metabolism by human monocytes. Studies with platelet-depleted cultures. J Exp Med 158:393–412

    Article  CAS  PubMed  Google Scholar 

  16. Kennedy MS, Stobo JD, Goldyne ME (1980) In vitro synthesis of prostaglandins and related lipids by populations of human peripheral blood mononuclear cells. Prostaglandins 20:135–145

    Article  CAS  PubMed  Google Scholar 

  17. Neri Serneri GG, Gensini GF, Poggesi L, Modesti PA, Rostagno C, Boddi M, Gori AM, Martini F, Ieri A, Margheri M, Abbate R (1994) The role of extraplatelet thromboxane A2 in unstable angina investigated with a dual thromboxane A2 inhibitor: importance of activated monocytes. Coron Artery Dis 5:137–145

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi T, Tahara Y, Matsumoto M, Iguchi M, Sano H, Murayama T, Arai H, Oida H, Yurugi-Kobayashi T, Yamashita JK et al (2004) Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest 114:784–794

    CAS  PubMed  Google Scholar 

  19. Cayatte AJ, Du Y, Oliver-Krasinski J, Lavielle G, Verbeuren TJ, Cohen RA (2000) The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apoE-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis. Arterioscler Thromb Vasc Biol 20:1724–1728

    CAS  PubMed  Google Scholar 

  20. Cyrus T, Yao Y, Ding T, Dogne JM, Pratico D (2007) Thromboxane receptor blockade improves the antiatherogenic effect of thromboxane A2 suppression in LDLR KO mice. Blood 109:3291–3296

    Article  CAS  PubMed  Google Scholar 

  21. Patrono C, Garcia Rodriguez LA, Landolfi R, Baigent C (2005) Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 353:2373–2383

    Article  CAS  PubMed  Google Scholar 

  22. Caligiuri G, Levy B, Pernow J, Thoren P, Hansson GK (1999) Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci USA 96:6920–6924

    Article  CAS  PubMed  Google Scholar 

  23. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  24. Back M, Qiu H, Haeggstrom JZ, Sakata K (2004) Leukotriene B4 is an indirectly acting vasoconstrictor in guinea pig aorta via an inducible type of BLT receptor. Am J Physiol Heart Circ Physiol 287:H419–H424

    Article  PubMed  Google Scholar 

  25. Redgrave JN, Lovett JK, Gallagher PJ, Rothwell PM (2006) Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford Plaque Study. Circulation 113:2320–2328

    Article  CAS  PubMed  Google Scholar 

  26. Kleindorfer D, Panagos P, Pancioli A, Khoury J, Kissela B, Woo D, Schneider A, Alwell K, Jauch E, Miller R, Moomaw C, Shukla R, Broderick JP (2005) Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke 36:720–723

    Article  PubMed  Google Scholar 

  27. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of Toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:1158–1161

    CAS  PubMed  Google Scholar 

  28. Hwang D (2001) Modulation of the expression of cyclooxygenase-2 by fatty acids mediated through Toll-like receptor 4-derived signaling pathways. Faseb J 15:2556–2564

    Article  CAS  PubMed  Google Scholar 

  29. Back M, Bu DX, Branstrom R, Sheikine Y, Yan ZQ, Hansson GK (2005) Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA 102:17501–17506

    Article  PubMed  CAS  Google Scholar 

  30. Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143

    Article  CAS  PubMed  Google Scholar 

  31. Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ (1999) Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res 59:4574–4577

    CAS  PubMed  Google Scholar 

  32. Ashton AW, Ware JA (2004) Thromboxane A2 receptor signaling inhibits vascular endothelial growth factor-induced endothelial cell differentiation and migration. Circ Res 95:372–379

    Article  CAS  PubMed  Google Scholar 

  33. Ashton AW, Cheng Y, Helisch A, Ware JA (2004) Thromboxane A2 receptor agonists antagonize the proangiogenic effects of fibroblast growth factor-2: role of receptor internalization, thrombospondin-1, and alpha(v)beta3. Circ Res 94:735–742

    Article  CAS  PubMed  Google Scholar 

  34. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, Lo KM, Gillies S, Javaherian K, Folkman J (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100:4736–4741

    Article  CAS  PubMed  Google Scholar 

  35. Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N, Katagiri K, Kinashi T, Tanaka T, Miyasaka M, Nagai H, Ushikubi F, Narumiya S (2003) Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol 4:694–701

    Article  CAS  PubMed  Google Scholar 

  36. Ishizuka T, Matsumura K, Matsui T, Takase B, Kurita A (2003) Ramatroban, a thromboxane A2 receptor antagonist, prevents macrophage accumulation and neointimal formation after balloon arterial injury in cholesterol-fed rabbits. J Cardiovasc Pharmacol 41:571–578

    Article  CAS  PubMed  Google Scholar 

  37. Egan KM, Wang M, Fries S, Lucitt MB, Zukas AM, Pure E, Lawson JA, FitzGerald GA (2005) Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism. Circulation 111:334–342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Linneus Center for Research on Inflammation and Cardiovascular Disease of the Swedish Research Council and by grants from AFA health insurance company foundation, the Swedish Heart-Lung Foundation, Söderberg Foundation, The Swedish Research Council (6816-10350, 71X-14121, and 20854), the Konung Gustav V:s 80 årsfond, and EC FP6 (LSHM-CT-2004-005033). The report reflects only the author's views, and the European Commission is not liable for any use that may be made of the information herein. The work of A. Gabriele was supported by a European Union Marie Curie fellowship. The work of G. Paulsson-Berne was supported by the Swedish Research Council.

Disclosures

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Gabrielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrielsen, A., Qiu, H., Bäck, M. et al. Thromboxane synthase expression and thromboxane A2 production in the atherosclerotic lesion. J Mol Med 88, 795–806 (2010). https://doi.org/10.1007/s00109-010-0621-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0621-6

Keywords

Navigation