Skip to main content
Log in

Thromboxanes: Synthase and receptors

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Thromboxane A2 is a biologically potent arachidonate metabolite through the cyclooxygenase pathway. It induces platelet aggregation and smooth muscle contraction and may promote mitogenesis and apoptosis of other cells. Its roles in physiological and pathological conditions have been widely documented. The enzyme that catalyzes its synthesis, thromboxane A2 synthase, and the receptors that mediate its actions, thromboxane A2 receptors, are the two key components critical for the functioning of this potent autacoid. Recent molecular biological studies have revealed the structure-function relationship and gene organizations of these proteins as well as genetic and epigenetic factors modulating their gene expression. Future investigation should shed light on detailed molecular signaling events specifying thromboxane A2 actions, and the genetic underpinning of the enzyme and the receptors in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe J, Takeguchi K, Takahashi N, Tsutsumi E, Taniyama Y, Abe K. Rat kidney thromboxane receptor: Molecular cloning, signal transduction and intrarenal expression localization. J Clin Invest 96:657–664;1995.

    Google Scholar 

  2. Ali S, Davis MG, Becker MW, Dorn GW. Thromboxane A2 stimulates vascular smooth muscle hypertrophy by unregulating the synthesis and release of endogenous basic fibroblast growth factor. J Biol Chem 268:17397–17403;1993.

    Google Scholar 

  3. Allan CJ, Higashiura K, Martin M, Morinelli TA, Kurtz DT, Geoffroy O, Meier GA, Gettys TW, Halushka PV. Characterization of the cloned HEL cell thromboxane A2 receptor: Evidence that the affinity state can be altered by Gα13 and Gαq. J Pharmacol Exp Ther 277:1132–1139;1996.

    Google Scholar 

  4. Andrews, NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362:722–770;1993.

    Google Scholar 

  5. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Orkin SH. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci USA 90:11488–11492;1993.

    Google Scholar 

  6. Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Ramdsorf HJ, Jonat C, Herrilich P, Karin M. Phorbol-ester inducible genes contain a common cis-element recognized by a TPA-modulated transacting factor. Cell 49:729–739;1987.

    Google Scholar 

  7. Arita H, Nakano T, Hanasaki K. Thromboxane A2: Its generation and role in platelet activation. Prog Lipid Res 28:273–301;1989.

    Google Scholar 

  8. Baek SJ, Lee K-D, Shen R-F. Genomic structure and polymorphism of the human thromboxane synthase-encoding gene. Gene 173:251–256;1996.

    Google Scholar 

  9. Baldassare JJ, Tarver AP, Henderson PA, Mackin WM, Sahagan B, Fisher GJ. Reconstitution of thromboxane A2 in receptor stimulated phosphoinositide hydrolysis in isolated platelet membranes: Involvement of phospho-inositide-specific phospholipase C-b and GTP-binding protein Gq. Biochem J 291:235–240;1993.

    Google Scholar 

  10. Bhagwat SS, Hamann PR, Still WC, Bunting S, Fitzpatrick FA. Synthesis and structure of the platelet aggregation factor thromboxane A2. Nature 315:511–513;1985.

    Google Scholar 

  11. Borg C, Lim CT, Yeomans DC, Dieter JP, Kamiotis D, Anderson EG, LeBreton GC. Purification of rat brain, rabbit aorta and human platelet thromboxane A2/prostaglandin H2 receptors by immunoaffinity chromatography employing anti-peptide and anti-receptor antibodies. J Biol Chem 269:6109–6116;1994.

    Google Scholar 

  12. Brass LF, Shaller CC, Belmonte EJ. Inositol-1,4,5-triphosphate induced granule secretion in platelets: Evidence that the activation of phospholipase C mediated by platelet thromboxane receptors involves a guanine nucleotide binding protein dependent mechanism distinct from that of thrombin. J Clin Invest 79:1269–1275;1987.

    Google Scholar 

  13. Brewster AG, Brown GR, Jessup R, Smithers MJ, Stocker A. In Abstr 7th International Conference on Prostaglandins and Related Compounds, Florence, 1990.

  14. Bunting SR, Gryglewski S, Moncada S, Vane JR. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12:897–915;1976.

    Google Scholar 

  15. Casey LC, Fletcher JR, Zmudka MI, Ramwell PW. Prevention of endotoxin-induced pulmonary hypertension in primates by the use of a selective thromboxane synthetase inhibitor, OKY-1581. J Pharmacol Exp Ther 222:441–446;1982.

    Google Scholar 

  16. Chan JY, Han X-L, Kan YW. Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. Proc Natl Acad Sci USA 90:11371–11375;1993.

    Google Scholar 

  17. Chaudhary AK, Nokubo M, Ramachandra R, Yeola SN, Morrow JD, Alair IA, Marnett LJ. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 265:1580–1582;1994.

    Google Scholar 

  18. Chen ST, Hsu CY, Hogan EL, Halushka PV, Linet OI, Yatsu FM. Thromboxane, prostacyclin, and leukotrienes in cerebral ischemia. Neurology 36:466–470;1986.

    Google Scholar 

  19. Chiang N. Molecular analysis of the structure and ligand binding relationship of thromboxane A2 receptors; PhD Diss, University of Kentucky, 88–90;1996.

  20. Chiang N, Kan WN, Tai HH. Site-directed mutagenesis of cysteinyl and serine residues of human thromboxane A2 receptor in insect cells. Arch Biochem Biophys 334:9–17;1996.

    Google Scholar 

  21. Chiang N, Tai HH. The role of N-glycosylation of human platelet thromboxane A2 receptor in ligand binding. Arch Biochem Biophys, in press.

  22. Coleman RA, Humphrey PPA, Kennedy I, Levy CP, Lumley P. Comparison on the actions of U-46619, a prostaglandin H2 analogue, with those of prostaglandin H2 and thromboxane A2 on some isolated smooth muscle preparations. Br J Pharmacol 73:773–778;1981.

    Google Scholar 

  23. D'Angelo DD, Davis MG, Ali S, Dorn GW. Cloning and pharmacologic characterization of a thromboxane A2 receptor from K562 (human chronic myelogenous leukemia) cells. J Pharmacol Exp Ther 271:1034–1041;1994.

    Google Scholar 

  24. D'Angelo DD, Davis MG, Houser WA, Eubank JJ, Ritchie ME, Dorn GW. Characterization of 5′ end of human thromboxane receptor gene: Organization analysis and mapping of protein kinase C-response elements regulating expression in platelets. Circ Res 77:466–474;1995.

    Google Scholar 

  25. D'Angelo DD, Eubank JJ, Davis MG, Dorn GW. Mutagenic analysis of platelet thromboxane receptor cysteines: Role in ligand binding and receptor effector coupling. J Biol Chem 271:6233–6240;1996.

    Google Scholar 

  26. D'Angelo DD, Terasawa T, Carlisle SJ, Dorn GW, Lynch KR. Characterization of a rat kidney thromboxane A2 receptor: High affinity for agonist ligand I-BOP. Prostaglandins 52:303–316;1996.

    Google Scholar 

  27. DeClerck F, Beetens J, Dechaffoy de Courcelles D, Freyne E, Janssen PAJ. R68070: Thromboxane synthetase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade, combined in one molecule. I. Biochemical profile in vitro. Thromb Haemost 61:35–42;1989.

    Google Scholar 

  28. Diczfalusy U, Falardeau P, Hammarstrom S. Conversion of prostaglandin endoperoxides to C17-hydroxy acids catalyzed by human platelet thromboxane synthetase. FEBS Lett 84:271–274;1977.

    Google Scholar 

  29. Diczfalusy U, Hammarstrom S. Inhibitors of thromboxane synthase in human platelets. FEBS Lett 82:108–110;1977.

    Google Scholar 

  30. Dixon RAF, Sigal IS, Candelore MR, Register RB, Scattergood W, Rands E, Strader CD. Structural features required for ligand binding to the b-adrenergic receptor. EMBO J 6:3269–3275;1987.

    Google Scholar 

  31. Donadio JV, Anderson CF, Mitchell JC III, Holley KE, Ilstrap DM, Fuster V, Chesebro JH. Membranoproliferative Glomerulonephritis. A prospective trial of platelet-inhibitor therapy. N Engl J Med 310:1421–1426;1984.

    Google Scholar 

  32. Dorn GW. Distinct platelet thromboxane A2/prostaglandin H2 receptor subtypes: A radioligand binding study of human platelets. J Clin Invest 84:1883–1891;1989.

    Google Scholar 

  33. Dorn GW. Isoelectric and mass characterization of human platelet thromboxane A2/prostaglandin H2 receptors. Biochem Biophys Res Commun 163:183–188;1989.

    Google Scholar 

  34. Dorn GW. Cyclic oxidation-reduction reactions regulate thromboxane A2/prostaglandin H2 receptor number and affinity in human platelet membranes. J Biol Chem 265:4240–4246;1990.

    Google Scholar 

  35. Dorn GW. Mechanism for homologous down regulation of thromboxane A2 receptors in cultured human chronic myelogenous leukemia (K562) cells. J Pharmacol Exp Ther 259:228–234;1991.

    Google Scholar 

  36. Dorn GW. Regulation of response to thromboxane A2 in CHRF-288 megakaryotic cells. Am J Physiol 262:C991-C999;1992.

    Google Scholar 

  37. Dorn GW, Becker MW. Thromboxane A2 stimulated signal transduction in vascular smooth muscle. J Pharmacol Exp Ther 265:447–456;1993.

    Google Scholar 

  38. Dorn GW, Davis MG, D'Angelo DD. Structural determinants for agonist binding affinity to thromboxane/prostaglandin endoperoxide (TP) receptors: Analysis of chimeric rat/human TP receptors. J Biol Chem 272:12399–12405;1997.

    Google Scholar 

  39. Dorn GW, Liel N, Trask JL, Mais DE, Assey ME, Halushka PV. Increased platelet thromboxane A2/prostaglandin H2 receptors in patients with acute myocardial infarction. Circulation 81:212–218;1990.

    Google Scholar 

  40. Farrukh IS, Michael JR, Summer WR, Adkinson NF Jr, Gurtner GH. Thromboxane-induced pulmonary vasoconstriction. Involvement of calcium. J Appl Physiol 58:34–44;1985.

    Google Scholar 

  41. Ferraris V, Smith JB, Silver MJ. Radioimmunoassay of thromboxane B2. Thromb Haemostasis 38:20–21;1977.

    Google Scholar 

  42. Fiddle GI, Lumley P. Preliminary clinical studies with thromboxane synthase inhibitors and thromboxane receptor blockers. Circulation 81(suppl I):169–178;1990.

    Google Scholar 

  43. Fitzgerald DJ, Doran J, Jackson E, FitzGerald GA. Coronary vascular occlusion mediated via thromboxane A2/prostaglandin endoperoxide receptor activation in vitro. J Clin Invest 77:496–503;1986.

    Google Scholar 

  44. Fitzgerald DJ, Rocki W, Murray R, Mayo G, FitzGerald GA. Thromboxane A2 synthesis in pregnancy-induced hypertension. Lancet 335:751–754;1990.

    Google Scholar 

  45. FitzGerald GA, Healy C, Daugherty J. Thromboxane A2 biosynthesis in human diseases. Fed Proc 46:154–158;1987.

    Google Scholar 

  46. FitzGerald GA, Reilly IA, Pederson AK. The biochemical pharmacology of thromboxane synthetase inhibition in man. Circulation 72:1194–1201;1985.

    Google Scholar 

  47. Fitzpatrick F, Gorman R, Bundy G, Honohan T, McGuire J, Sun F. 9,11-Iminoepoxyprosta-5,13-dienoic acid is a selective thromboxane A2 synthetase inhibitor. Biochim Biophys Acta 573:238–244;1979.

    Google Scholar 

  48. Foulon I, Bachir D, Galacteros F, Maclouf J. Increase in vivo production of thromboxane in patients with sickle cell disease is accompanied by an impairment of platelet functions to thromboxane A2 agonist U-46619. Arterioscler Thromb 13:421–426;1993.

    Google Scholar 

  49. Funk CD, Furcho L, Movan N, FitzGerald GA. Point mutation in the seventh hydrophobic domain of the human thromboxane A2 receptor allows discrimination between agonist and antagonist binding sites. Mol Pharmacol 44:934–939;1993.

    Google Scholar 

  50. Furci L, Fitzgerald DJ, FitzGerald GA. Heterogeneity of prostaglandin H2/thromboxane A2 receptors: Distinct subtypes mediate vascular smooth muscle contraction and platelet aggregation. J Pharmacol Exp Ther 258:74–81;1991.

    Google Scholar 

  51. Gorman RR, Bundy GL, Peterson DC, Sun FF, Miller OV, Fitzpatrick FA. Inhibition of human platelet thromboxane synthetase by 9,11-azoprosta-5,13-dienoic acid. Proc Natl Acad Sci USA 74:4007–4013;1977.

    Google Scholar 

  52. Goerig M, Habenicht AJR, Heits R, Zeh W, Katus H, Kommerell B, Ziegler R, Glomset JA. sn-1,2-diacylglycerol and phorbol diesters stimulate thromboxane synthesis by de novo synthesis of prostaglandin H synthase in human promyelocytic leukemia cell. J Clin Invest 79:903–911;1987.

    Google Scholar 

  53. Goerig M, Habenicht AJR, Zeh W, Salbach P, Kommerell B, Rothe DER, Nastainczyk W, Glomset JA. Evidence for coordinate, selective regulation of eicosanoid synthesis in platelet-derived growth factor-stimulated 3T3 fibroblasts and in HL-60 cells induced to differentiate into macrophages or neutrophils. J Biol Chem 263:19484–19391;1988.

    Google Scholar 

  54. Gresele P, Deckmyn H, Giuseppe G, Neuci GG, Vermylen J. Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends Pharmacol Sci 121:158–163;1991.

    Google Scholar 

  55. Gunther RA, Smith GJ, Holcroft JW. Pulmonary response to selective inhibition of thromboxane A2 synthesis during endotoxemia utilizing a unique inhibitor. Surg Forum 35:42–44;1984.

    Google Scholar 

  56. Hall JG. Genomic imprinting: Review and relevance to human diseases. Am J Hum Genet 46:857–873;1990.

    Google Scholar 

  57. Halushka PV, Allan CJ, Davis-Bruno KL. Thromboxane A2 receptors. J Lipid Mediators Cell Signalling 12:361–378;1995.

    Google Scholar 

  58. Halushka PV, Mais DE, Saussy DL. Platelet and vascular smooth muscle thromboxane A2/prostaglandin H2 receptors. Fed Proc 46:149–153;1987.

    Google Scholar 

  59. Hamberg M, Samuelsson B. Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci USA 70:890–903;1973.

    Google Scholar 

  60. Hamberg M, Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404;1974.

    Google Scholar 

  61. Hamberg M, Svensson J, Samuelsson B. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–2998;1975.

    Google Scholar 

  62. Hamberg M, Svensson J, Wakabayashi T, Samuelsson B. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc Natl Acad Sci USA 71:345–349;1974.

    Google Scholar 

  63. Hanasaki K, Arita H. Characterization of a new compound, S-145, as a specific TXA2 receptor anatagonist in platelets. Thromb Res 50:305–376;1988.

    Google Scholar 

  64. Hanasaki K, Nakano T, Arita H. Receptor mediated mitogen effect of thromboxane A2 in vascular smooth muscle cells. Biochem Pharmacol 40:2535–2542;1990.

    Google Scholar 

  65. Hanasaki K, Nakano K, Kasai H, Arita H. Biochemical characterization and comparison of rat thromboxane A2/prostaglandin H2 receptors in platelets and cultures aortic smooth muscle cells. Biochem Pharmacol 38:2967–2976;1989.

    Google Scholar 

  66. Harada N, Yamada K, Saito K, Kibe N, Dohmae S, Takagi Y. Structural characterization of the human estrogen synthetase (aromatase) gene. Biochem Biophys Res Commun 166:365–372;1990.

    Google Scholar 

  67. Hashimoto H, Toide K, Kitamura R, Fujita M, Tagawa S, Itoh S, Kamataki T. Gene structure of CYP3A4, an adult-specific form of cytochrome P-450 in human livers, and its transcriptional control. Eur J Biochem 218:585–595;1993.

    Google Scholar 

  68. Haurand M, Ullrich V. Isolation and characterization of thromboxane synthase from human platelets as a cytochrome p-450 enzyme. J Biol Chem 260:15059–15067;1985.

    Google Scholar 

  69. Hecker M, Ullrich V. On the mechanism of PGI2 and TxA2 biosynthesis. J Biol Chem 264:141–150;1989.

    Google Scholar 

  70. Hendrich BD, Willard HF. Epigenetic regulation of gene expression: The effect of altered chromatin structure from yeast to mammals. Mol Genet 4:1765–1777;1995.

    Google Scholar 

  71. Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kagayama R, Nakanishi S, Narumiya S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349:617–620;1991.

    Google Scholar 

  72. Hirata T, Kakizuka A, Ushikubi F, Fuse I, Okuma M, Narumiya S. Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J Clin Invest 94:1662–1667;1994.

    Google Scholar 

  73. Hsu CY, Halushka PV, Hogan EL, Banik NL, Lee WA, Perot PL. Alteration of thromboxane and prostacyclin levels in experimental spinal cord injury. Neurology 35:1003–1009;1985.

    Google Scholar 

  74. Huang CF, Tai HH. Expression and site-directed mutagenesis of mouse prostaglandin E2 receptor EP3 subtype in insect cells. Biochem J 306:493–498;1995.

    Google Scholar 

  75. Ihara H, Yokoyama C, Miyata A, Kosaka T, Nüsing R, Ullrich V, Tanabe T. Induction of thromboxane synthase and prostaglandin endoperoxide synthase mRNAs in human erythroleukemia cells by phorbol ester. FEBS Lett 306:161–164;1992.

    Google Scholar 

  76. Ingerman-Wojenski C, Siliver MJ, Smith JB, Macarak E. Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J Clin Invest 67:1292–1296;1981.

    Google Scholar 

  77. Johnson AL, Kauer JC, Sharma DC, Dorfman RI. The synthesis of 1-arylimidazole, a new class of steroid hydroxylation inhibitors. J Med Chem 12:1024–1028;1969.

    Google Scholar 

  78. Jones DA, Fitzpatrick FA. Thromboxane A2 synthase: Modification during ‘suicide’ inactivation. J Biol Chem 34:23510–23514;1991.

    Google Scholar 

  79. Jones RL, Wilson NM. Thromboxane receptor antagonism shown by a prostanoid with a bicyclo [2.2.1] hepatane ring. Br J Pharmacol 73:220–221;1981.

    Google Scholar 

  80. Karanian JN, Ramey ER, Ramwell PW. Effect of gender on development and diurnal rhythm of prostaglandin receptors in rat aorta. Br J Pharmacol 73:903–907;1981.

    Google Scholar 

  81. Karin M, Smeal T. Control of transcription factors by signal transduction pathways: The beginning of the end. Trends Biochem Sci 17:418–422;1992.

    Google Scholar 

  82. Katanaka J, Hashimoto H, Sutimoto Y, Sawada M, Negishi M, Suzumura A, Marunouchi T, Ichikawa A, Baba A. cDNA cloning of a thromboxane A2 receptor from rat astrocytes. Biochim Biophys Acta 1265:220–223;1995.

    Google Scholar 

  83. Keith JC, Spitz B, Van Assche FA. Thromboxane synthase inhibition as a new therapy for preeclampsia: Animal and human studies minireview. Prostaglandins 45:3–13;1993.

    Google Scholar 

  84. Kinsella CT, O'Mahony DJ, FitzGerald GA. Phosphorylation and regulated expression of the human thromboxane A2 receptor. J Biol Chem 269:29914–29919;1994.

    Google Scholar 

  85. Knezevic I, Borg C, LeBreton GC. Identification of Gq as one of the G-proteins which copurify with human platelet thromboxane A2/prostaglandin H2 receptors. J Biol Chem 268:26011–26017;1993.

    Google Scholar 

  86. Ku EC, McPherson SE, Signor C, Chertock H, Cash WD. Characterization of imidazole [1,5a]pyridine-5-hexanoic acid (CGS13080) as a selective thromboxane synthetase inhibitor using in vitro and in vivo biochemical models. Biochem Biophys Res Commun 112;899–906;1983.

    Google Scholar 

  87. Lages B, Malmsten C, Weiss HJ, Samuelsson B. Impaired platelet response to thromboxane A2 and defective calcium mobilization in a patient with a bleeding disorder. Blood 57:545–552;1981.

    Google Scholar 

  88. LeBreton GC, Venton DL, Enke SE, Halushka PV. 13-Azaprostanoic acid: A specific antagonist of the human blood platelet thromboxane/endoperoxide receptor. Proc Natl Acad Sci USA 76:4097–4101;1979.

    Google Scholar 

  89. Ledbetter DH, Engel E. Uniparental disomy in humans; development of an imprinting map and its implications for parental diagnosis. Hum Mol Genet 4:1757–1764;1995.

    Google Scholar 

  90. Lee KD. Transcriptional regulation of the human thromboxane synthase gene expression; PhD Diss, University of Maryland, Baltimore, 1996.

    Google Scholar 

  91. Lee KD, Baek SJ, Shen R-F. Cloning and characterization of the human thromboxane synthase promoter. Biochem Biophys Res Commun 201:379–387;1994.

    Google Scholar 

  92. Lee KD, Baek SJ, Shen R-F. Multiple factors regulating the expression of human thromboxane synthase gene. Biochem J 319:783–791;1996.

    Google Scholar 

  93. Lefer AM, Darius H. A pharmacological approach to thromboxane receptor antagonism. Fed Proc 46:144–148;1987.

    Google Scholar 

  94. Liel N, Mais DE, Halushka PV. Desensitization of the platelet thromboxane A2/prostaglandin H2 receptors by the mimetic U-46619. J Pharmacol Exp Ther 247:1133–1138;1988.

    Google Scholar 

  95. Liel N, Nathan I, Yermiyahu T, Zolotov Z, Lieberman JR, Dvilansky A, Halushka PV. Increased platelet thromboxane A2/prostaglandin H2 receptors in patient with pregnancy induced hypertension. Thromb Res 70:205–210;1993.

    Google Scholar 

  96. Liu F, Wu JY, Orr JA. Thromboxane A2-induced pulmonary artery contraction is regulated by pertussis toxin sensitive G-proteins. FASEB J 9:A162;1995.

    Google Scholar 

  97. Liu Y, Yoden K, Shen R-F, Tai HH. 12-L-Hydroxy-5,8,10-heptadecatrienoic acid (HHT) is an excellent substrate for NAD+-dependent 15-hydroxy-prostaglandin dehydrogenase. Biochem Biophys Res Commun 129:268–274;1985.

    Google Scholar 

  98. Macdonald JE. Nitric oxide synthase inhibitors. Ann Rep Med Chem 31:221–230;1996.

    Google Scholar 

  99. Mais DE, DeHoli D, Sightler H, Halushka PV. Different pharmacologic activities for 13-azapinane thromboxane A2 analogs in platelets and blood vessels. Eur J Pharmacol 148:109–315;1988.

    Google Scholar 

  100. Mais DE, Dunlap C, Hamanaka N, Halushka PV. Further studies on the effect of epimers of thromboxane A2 antagonists on platelets and veins. Eur J Pharmacol 111:125–128;1985.

    Google Scholar 

  101. Mais DE, Saussy D, Chaikhouni A, Kochel P, Knapp D, Hamanaka N, Halushka PV. Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels: Evidence for different receptors. J Pharmacol Exp Ther 233:418–424;1985.

    Google Scholar 

  102. Mais DE, True TA, Martinelli MJ. Characterization by photoaffinity labeling of the human platelet thromboxane A2/prostaglandin H2 receptor: Evidence for N-linked glycosylation. Eur J Pharmacol 227:267–274;1992.

    Google Scholar 

  103. Malmsten C. Some biological effects of prostaglandin endoperoxide analogues. Life Sci 18:169–176;1976.

    Google Scholar 

  104. Marini MG, Chan K, Casula L, Kan YW, Cao A, Moi P. HMAF, a small human transcription factor that heterodimerizes specifically with Nrf1 and Nrf2. J Biol Chem 272:16490–16497;1997.

    Google Scholar 

  105. Marsden PA, Heng HHQ, Scherer SW, Stewart RJ, Hall AV, Shi X-M, Tsui L-C, Schappert KT. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem 268:17478–17488;1993.

    Google Scholar 

  106. Martin DIK, Zon LI, Mutter G, Orkin SH. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344:444–447;1990.

    Google Scholar 

  107. Masuda A, Mais DE, Oatis JJ, Halushka PV. Platelet and vascular thromboxane A2/prostaglandin H2 receptor: Evidence for different subclasses in the rat. Biochem Pharmacol 42:537–544;1989.

    Google Scholar 

  108. Masuda K, Mathur RS, Duzic E, Halushka PV. Androgen regulation of thromboxane A2/prostaglandin H2 receptor expression in human erythroleukemia cells. Am J Physiol 265:E928-E934;1994.

    Google Scholar 

  109. Masuda A, Mathur R, Halushka PV. Testosterone increases thromboxane A2 receptors in cultures rat aortic smooth muscle cells. Circ Res 69:638–643;1991.

    Google Scholar 

  110. Masuda K, Ruff A, Morinelli TA, Mathur RS, Halushka PV. Testosterone increases thromboxane A2 receptor density in rat aortas and platelets. Am J Physiol 267:H887-H893;1993.

    Google Scholar 

  111. Mestel F, Oetliker O, Beck E, Felix R, Imbach P, Wagner H-P. Severe bleeding association with defective thromboxane synthase. Lancet i:157;1980.

    Google Scholar 

  112. Miyata A, Yokoyama C, Ihara H, Bandoh S, Takeda O, Takahashi E, Tanabe T. Characterization of the human gene (TBXAS1) encoding thromboxane synthase. Eur J Biochem 224:273–279;1994.

    Google Scholar 

  113. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proc Natl Acad Sci USA 91:9926–9930;1994.

    Google Scholar 

  114. Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30:293–333;1982.

    Google Scholar 

  115. Morinelli TA, Mais DE, Oatis JJ, Crumbley AJ, Halushka PV. Characterization of thromboxane A2/prostaglandin H2 receptors in human vascular smooth muscle cells. Life Sci 46:1765–1772;1990.

    Google Scholar 

  116. Morinelli TA, Niewiarowski S, Daniel JL, Smith JB. Receptor mediated effects of a PGH2 analog (U-46619) on human platelets. Am J Physiol 253:H1035-H1043;1987.

    Google Scholar 

  117. Morinelli TA, Oatis JJ, Okwu AK, Mais DE, Mayeux PR, Masuda A, Knapp DC, Halushka PV. Characterization of an [125I]-labelled thromboxane A2/prostaglandin H2 receptor agonist. J Pharmacol Exp Ther 251:557–562;1989.

    Google Scholar 

  118. Morinelli TA, Oatis JJ, Okwu AK, Mais DE, Mayeux PR, Masuda A, Knapp DC, Halushka PV. I-BOP, the most potent radiolabelled agonist for the TXA2/PGH2 receptor. Adv Prostaglandin Thromboxane Leukot Res 20:102–109;1990.

    Google Scholar 

  119. Morinelli TA, Zhang LM, Newman WH, Meier KE. Thromboxane A2/prostaglandin H2 stimulated mitogenesis of coronary artery smooth muscle cells involves activation of mitogen-activated protein kinase and S6 kinase. J Biol Chem 269:5693–5698;1993.

    Google Scholar 

  120. Morrow JD, Minton TA, Roberts LJ. The F2-isoprostane, 8-epi-prostaglandin F2 alpha, a potent agonist of the vascular thromboxane/endoperoxide receptor, is a platelet thromboxane/endoperoxide receptor antagonist. Prostaglandins 44:155–163;1992.

    Google Scholar 

  121. Murray R, Shipp E, FitzGerald GA. Prostaglandin endoperoxide/thromboxane A2 receptor desensitization: Crosstalk with adenylate cyclase in human platelets. J Biol Chem 265:21670–21675;1990.

    Google Scholar 

  122. Nagai H, Yokuo I, Togawa M, Arimura A, Matsuura N, Koda A, Hamano S, Ujie A, Nakazawa M. Effect of OKY-046, a new thromboxane A2 synthetase inhibitor, on experimental asthma in guinea pigs. Prostaglandins Leukot Med 30:111–121;1987.

    Google Scholar 

  123. Namba T, Sugimoto Y, Hirata M, Hayashi Y, Honda A, Watabe A, Negishi M, Ichikawa A, Narumiya S. Mouse thromboxane A2 receptor: cDNA, cloning expression and northern blot analysis. Biochem Biophys Res Commun 184:1197–1203;1992.

    Google Scholar 

  124. Nebert DW, Gonzalez FJ. P-450 genes: Structure, evolution and regulation. Annu Rev Biochem 56:945–993;1987.

    Google Scholar 

  125. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fuji-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Loper JC, Sato R, Waterman MR, Waxman DJ. The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 10:1–14;1991.

    Google Scholar 

  126. Needleman P, Minkes M, Raz A. Thromboxanes: Selective biosynthesis and distinct biological activities. Science 193:163–165;1976.

    Google Scholar 

  127. Needleman P, Moncada S, Bunting S, Vane JR, Hamberg M, Samuelsson B. Identification of an enzyme in platelet microsomes which generates TXA2 from prostaglandin endoperoxides. Nature 261:558–560;1976.

    Google Scholar 

  128. Needleman P, Raz A, Minkes MS, Ferrendelli JA, Sprecher H. Triene prostaglandins: Prostacyclin and thromboxane biosynthesis and unique biological activities. Proc Natl Acad Sci USA 76:944–948;1976.

    Google Scholar 

  129. Negishi M, Sugimoto Y, Ichikawa A. Prostaglandin E receptors. J Lipid Mediat Cell Signal 12:379–391;1995.

    Google Scholar 

  130. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42;1996.

    Google Scholar 

  131. Nicolaou KC, Magolda RI, Smith JB. Synthesis and biological properties of pinane-thromboxane A2, a selective inhibitor of coronary artery constriction, platelet aggregation and thromboxane formation. Proc Natl Acad Sci USA 76:2566–2570;1979.

    Google Scholar 

  132. Nigam S, Eskafi S, Roscher A, Weitzel H. Thromboxane A2 analogue U-46619 enhances tumor cell proliferation in HeLa cells via specific receptors which are apparently distinct from TXA2 receptors on human platelets. FEBS Lett 316:99–102;1993.

    Google Scholar 

  133. Nüsing R, Lesch R, Ullrich V. Immunohistochemical localization of thromboxane synthase in human tissues. Eicosanoids 3:53–58;1990.

    Google Scholar 

  134. Nüsing R, Sauter G, Fehr P, Dürmüller U, Kasper M, Gudat F, Ullrich V. Localization of thromboxane synthase in human tissues by monoclonal antibody Tü300. Pathol Anat Histopathol 421:249–254;1992.

    Google Scholar 

  135. Nüsing R, Schneider-Voss S, Ullrich V. Immunoaffinity purification of human thromboxane synthase. Arch Biochem Biophys 280:325–330;1990.

    Google Scholar 

  136. Nüsing RM, Hirata M, Kakizuka A, Eki T, Ozawa K, Narumiya S. Characterization and chromosomal mapping of the human thromboxane A2 receptor gene. J Biol Chem 268:25252–25259;1993.

    Google Scholar 

  137. Offermanns S, Langwitz KL, Spicher K, Schultz G. G-proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91:504–508;1994.

    Google Scholar 

  138. Ogletree ML. Overview of physiological and pathophysiological effects of thromboxane A2. Fed Proc 46:133–138;1987.

    Google Scholar 

  139. Ogletree ML, Harris DN, Greenberg R, Haslanger MF, Nakano M. Pharmacologic actions of SQ-29548, a novel selective thromboxane antagonist. J Pharmacol Exp Ther 234:435–441;1985.

    Google Scholar 

  140. Ohashi K, Ruan KH, Kulmacz RJ, Wu KK, Wang LH. Primary structure of human thromboxane synthase determined from the cDNA sequence. J Biol Chem 267:789–793;1992.

    Google Scholar 

  141. Ohuchida S, Hamanaka N, Hayashi M. Synthesis of thromboxane A2 analogs-2: (+/−) Thiathromboxane A2. Tetrahedron 39:4263–4268;1983.

    Google Scholar 

  142. Okwu AK, Mais DE, Halushka PV. Agonist induced phosphorylation of human platelet TXA2/PGH2 receptors. Biochim Biophys Acta 1221:83–88;1994.

    Google Scholar 

  143. Okwu AK, Ullian ME, Halushka PV. Homologous desensitization of human platelet thromboxane A2/prostaglandin H2 receptors. J Pharmacol Exp Ther 262:238–245;1992.

    Google Scholar 

  144. Patcheke H. Thromboxane A2/prostaglandin H2 receptor antagonists: A new therapeutic principle. Stroke 21 (suppl IV):139–142;1990.

    Google Scholar 

  145. Patrono C. Aspirin as an anti-platelet drug. New Engl J Med 330:1287–1294;1994.

    Google Scholar 

  146. Pichon B, Christophe-Hobertus C, Vassart G, Christopher D. Unmethylated thyroglobulin promoter may be repressed by methylation of flanking DNA sequences. Biochem J 298:537–541;1994.

    Google Scholar 

  147. Piper PJ, Vane JR. Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs. Nature 223:29–35;1969.

    Google Scholar 

  148. Pugliese G, Spokas EG, Marcinkiewicz E, Wong PYK. Hepatic transformation of prostaglandin D2 to a new prostanoid 9α,11β-prostaglandin F2 that inhibits platelet aggregation and constricts blood vessels. J Biol Chem 260:14621–14625;1985.

    Google Scholar 

  149. Randall MJ, Parry MJ, Kawkeswood E, Cross PE, Dickinson RP. UK-37248, a novel, selective thromboxane synthetase inhibitor with platelet anti-aggregatory and anti-thrombotic activity. Thromb Res 23:145–162;1981.

    Google Scholar 

  150. Raychowdhury MK, Yukawa M, Collins LJ, McGrall SH, Kent KC, Ware JA. Alternate splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem 269:19256–19261;1994.

    Google Scholar 

  151. Remuzzi G, FitzGerald GA, Patrono C. Thromboxane synthesis and action within the kidney. Kidney Int 41:1483–1493;1992.

    Google Scholar 

  152. Rogan PK, Pan J, Weissman SM. L1 repeat elements in the human ε-γ-globin gene intergenic region: Sequence analysis and concerted evolution within this family. Mol Biol Evol 4:327–342;1987.

    Google Scholar 

  153. Ruan K-H, Li P, Kulmacz RJ, Wu KK. Characterization of the structure and membrane interaction of NH2-terminal domain of thromboxane A2 synthase. J Biol Chem 269:20938–20942;1994.

    Google Scholar 

  154. Ruan KH, Milfeld K, Kulmacz RJ, Wu KK. Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: Implications for the substrate binding pocket. Protein Eng 7:1345–1351;1994.

    Google Scholar 

  155. Ruan K-H, Wang L-H, Wu KK, Kulmacz RJ. Amino-terminal topology of thromboxane synthase in the endoplasmic reticulum. J Biol Chem 268:19483–19490;1993.

    Google Scholar 

  156. Samama M, Lecrubier C, Conard J, Hotchen M, Breton-Gorius J, Vargaftig B, Chignard M, Lagarde M, Dechavanne M. Constitutional thrombocytopathy with subnormal response to thromboxane A2. Br J Haematol 48:293–303;1981.

    Google Scholar 

  157. Sasaki H, Hamada T, Ueda T, Seki R, Higashinakagawa T, Sakaki Y. Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development 111:573–581;1991.

    Google Scholar 

  158. Sasaki H, Jones PA, Chaillet JR, Ferguson-Smith AC, Barton S, Reik W, Surani MA. Parental imprinting: Potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev 6:1843–1856;1992.

    Google Scholar 

  159. Schwengel DA, Nouri N, Meyers DA, Levitt RC. Linkage mapping of the human thromboxane receptor (TBXA2R) to chromosome 19p13.3 using transcribed 3′-untranslated DNA sequence polymorphisms. Genomics 18:212–218;1993.

    Google Scholar 

  160. Sessa WC, Halushka PV, Okwu A, Nasjletti A. Characterization of the vascular thromboxane A2/prostaglandin endoperoxide receptor in rabbit aorta: Regulation by dexamethasone. Circ Res 67:1562–1569;1990.

    Google Scholar 

  161. Shen R-F. Thromboxane synthase: Purificatin, characterization and immunological studies. PhD Diss, University of Kentucky, 1985.

  162. Shen R-F, Tai HH. Monoclonal antibodies to thromboxane synthase from porcine lung. Production and application to development of a tandem immunoradiometric assay. J Biol Chem 261:11585–11591;1986.

    Google Scholar 

  163. Shen R-F, Tai HH. Immunoaffinity purification and characterization of thromboxane synthase from porcine lung. J Biol Chem 261:11592–11599;1986.

    Google Scholar 

  164. Shen R-F, Zhang L, Baek SJ, Tai HH, Lee K-D. The porcine thromboxane synthase-encoding cDNA: Molecular cloning, mRNA expression, and enzyme production in Sf9 insect cells. Gene 140:261–265;1994.

    Google Scholar 

  165. Shenker A, Goldsmith P, Unson CG, Spiegel AM. The G-protein coupled to the thromboxane receptor in human platelets is a member of the novel Gq family. J Biol Chem 266:9309–9313;1991.

    Google Scholar 

  166. Shibouta Y, Terashita ZN, Inada Y, Nishikawa K. Delay of the initiation of hypertension in spontaneously hypertensive rats by CV-4151, a specific thromboxane A2 synthetase inhibitor. Eur J Pharmacol 109:135–144;1985.

    Google Scholar 

  167. Simmons TR, Cook JA, Moore JN, Halushka PV. Thromboxane A2 receptors in equine monocytes: Identification of a new subclass of TXA2 receptors. J Leuk Biol 53:173–178;1993.

    Google Scholar 

  168. Sinzinger H, O'Grady J, Demers LM, Granström E, Kumlin M, Nell A, Peskar BA, Salmon JA, Westlund P. Thromboxane in cardiovascular disease. Eicosanoids 3:59–64;1990.

    Google Scholar 

  169. Smith EF III. Thromboxane A2 in cardiovascular and renal disorders: Is there a defined role of thromboxane receptor antagonists or thromboxane synthase inhibitors? Eicosanoids 2:199–211;1989.

    Google Scholar 

  170. Smith JB. Pharmacology of thromboxane synthetase inhibitors. Fed Proc 46:139–143;1987.

    Google Scholar 

  171. Sprague PW, Heikes JE, Gougoutas JZ, Malley MF, Harris DN, Greenberg R. Synthesis and in vitro pharmacology of 7-oxabicyclo [2.2.1]heptane analogues of thromboxane A2/PGH2. J Med Chem 28:1580–1590;1985.

    Google Scholar 

  172. Spurney RF, Onorato JJ, Ruiz P, Pisetsky DS, Coffman TM. Characterization of glomerular thromboxane receptors in murine lupus nephritis. J Pharmacol Exp Ther 264:584–590;1993.

    Google Scholar 

  173. Sun FF, Chapman JP, McGuire JC. Metabolism of prostaglandin endoperoxides in animal tissues. Prostaglandins 14:1055–1074;1977.

    Google Scholar 

  174. Tai HH, Huang CF, Chiang N. Structure and function of prostanoid receptors as revealed by site-directed mutagenesis. Adv Exp Med Biol 407:205–209;1996.

    Google Scholar 

  175. Tai HH, Tai CL, Lee N. Selective inhibition of thromboxane synthetase by pyridine and its derivatives. Arch Biochem Biophys 203:758–763;1980.

    Google Scholar 

  176. Tai HH, Yuan B. Development of radioimmunoassay for thromboxane B2. Anal Biochem 87:343–349;1978.

    Google Scholar 

  177. Tai HH, Yuan B. On the inhibitory potency of imidazole and its derivatives on thromboxane synthetase. Biochem Biophys Res Commun 80:236–242;1978.

    Google Scholar 

  178. Takahara K, Murray R, FitzGerald GA, Firgerald DJ. The response to thromboxane A2 analogues in human platelets: Discrimination of two binding sites linked to distinct effector systems. J Biol Chem 265:6836–6844;1990.

    Google Scholar 

  179. Takahashi N, Takeuchi K, Abe T, Murakami K, Yamaguchi M, Abe K. Immunohistochemical localization of thromboxane receptor and thromboxane synthase in rat testis. Endocrinology 136:4143–4146;1995.

    Google Scholar 

  180. Taketo M, Rochelle JM, Sugimoto Y, Namba T, Honda A, Negishi M, Ichikawa A, Narumiya S, Seldin MF. Mapping of the genes encoding mouse thromboxane A2 receptor and prostaglandin E receptor subtypes EP2 and EP3. Genomics 19:585–588;1994.

    Google Scholar 

  181. Tanabe T, Ullrich V. Prostacyclin and thromboxane synthases. J Lipid Mediators Cell Signalling 12:243–256;1995.

    Google Scholar 

  182. Tazawa R, Green ED, Ohashi K, Wu KK, Wang L-H. Characterization of the complete genomic structure of human thromboxane synthase gene and functional analysis of its promoter. Arch Biochem Biophys 334:349–356;1996.

    Google Scholar 

  183. Tone Y, Miyata A, Hara S, Yukawa S, Tanabe T. Abundant expression of thromboxane synthase in rat macrophages. FEBS Lett 340:241–244;1994.

    Google Scholar 

  184. Toki T, Itoh J, Arai K, Kitazawa J, Yokoyama M, Igarashi K, Yamamoto M, Ito E. Abundant expression of erythroid transcription factor p45 NF-E2 mRNA in human peripheral granulocytes. Biochem Biophys Res Commun 219:760–765;1997.

    Google Scholar 

  185. Ushikubi F, Aiba Y, Nakamura K, Namba T, Hirata M, Mazda O, Katsura Y, Narumiya S. Thromboxane A2 receptor is highly expressed in mouse immature thymocytes and mediates DNA fragmentation and apoptosis. J Exp Med 178:1825–1830;1993.

    Google Scholar 

  186. Ushikubi F, Nakajima M, Hirata M, Okuma M, Fujiwara M, Narumiya S. Purification of the thromboxane A2/prostaglandin H2 receptor from human blood platelets. J Biol Chem 264:16496–16501;1989.

    Google Scholar 

  187. Ushikubi F, Nakamura K, Narumiya S. Functional reconstitution of platelet thromboxane A2 receptors with Gq and Gi2 in phospholipid vesicles. Mol Pharmacol 46:808–816;1994.

    Google Scholar 

  188. Violi F, Ghiselli A, Iuliano L, Pratico D, Alessandri C, Balsano F. Inhibition by picotamide of thromboxane production in vivo and in vitro. Eur J Clin Pharmacol 33:599–602;1988.

    Google Scholar 

  189. Voyno-Yasenetskaya T, Conklin BR, Gilbert RL, Hooley R, Bourne HR, Barber DL. Gα13 stimulates Na-H exchange. J Biol Chem 269:4721–4724;1994.

    Google Scholar 

  190. Wang L-H, Matijevic-Aleksic N, Hsu P-Y, Ruan K-H, Wu KK, Kulmacz RJ. Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis. J Biol Chem 271:19970–19975;1996.

    Google Scholar 

  191. Wang L-H, Tazawa R, Lang A-Q, Wu KK. Alternate splicing of human thromboxane synthase mRNA. Arch Biochem Biophys 315:273–278;1994.

    Google Scholar 

  192. Watanabe T, Nakano A, Emerling D, Hashimoto Y, Tsukamoto K, Horie Y, Kinoshita M, Kurokawa K. Prostaglandin F enhances tyrosine phosphorylation and DNA synthesis through phospholipase C-coupled receptor via Ca2+ dependent intracellular pathway in NIH-3T3 cells. J Biol Chem 269:17619–17625;1994.

    Google Scholar 

  193. Webb ML, Liu EC, Monshizadegan H, Hedberg A, Misra RN, Goldberg H, Harris DN. Binding and function of a potent new thromboxane receptor antagonist, BMS 180,291, in human platelets. J Pharmacol Exp Ther 264:1387–1394;1993.

    Google Scholar 

  194. Weiss HJ, Lages BA. Possible congenital defect in platelet thromboxane synthetase. Lancet ii:760–761;1977.

    Google Scholar 

  195. Whittle BRJ, Kauffman GL, Moncada S. Ulceration of the gastric mucosa following vasoconstriction with thromboxane A2. Nature 292:472–474;1981.

    Google Scholar 

  196. Woodworth SH, Li X, Lei ZM, Rao ChV, Yussman MA, Spinnato II JA, Yokoyama C, Tanabe T, Ullrich V. Eicosanoid biosynthetic enzymes in placental and decidual tissues from pre-eclamptic pregnancies: Increased expression of thromboxane-A2 synthase gene. J Clin Endocrinol Metab 78:1225–1231;1994.

    Google Scholar 

  197. Wu KK, Le Breton GC, Tai HH, Chen YC. Abnormal platelet response to thromboxane A2. J Clin Invest 67:1801–1804;1981.

    Google Scholar 

  198. Wu KK, Minkoff IM, Rossi EC, Chen YC. Hereditary bleeding disorder due to a primary defect in a platelet release reaction. Br J Haematol 47:241–249;1981.

    Google Scholar 

  199. Xia Z, Shen R-F, Baek SJ, Tai H-H. Expression of two different forms of cDNA for thromboxane synthase in insect cells and site-directed mutagenesis of a critical cysteine residue. Biochem J 295:457–461;1993.

    Google Scholar 

  200. Xia ZN, Tai HH. Bacterial expression of functional membrane bound thromboxane synthase lacking its hydrophobic N-terminal segment. Arch Biochem Biophys 321:531–534;1995.

    Google Scholar 

  201. Yamamoto Y, Kaniya K, Terao S. Modeling of human thromboxane A2 receptor and analysis of the receptor-ligand interaction. J Med Chem 36:820–825;1993.

    Google Scholar 

  202. Yokoyama C, Miyata A, Ihara H, Ullrich V, Tanabe T. Molecular cloning of human thromboxane synthase. Biochem Biophys Res Commun 178:1474–1484;1991.

    Google Scholar 

  203. Yokoyama C, Miyata A, Suzuki K, Nishikawa Y, Yoshimoto T, Yamamoto S, Nüsing R, Ullrich V, Tanabe T. Expression of human thromboxane synthase using a baculovirus system. FEBS 318:91–94;1993.

    Google Scholar 

  204. Yui Y, Sakaguchi K, Susawa T, Hattori R, Takatsu Y, Yui N, Kawai C. Thromboxane A2 analogue induced coronary artery vasoconstriction in the rabbit. Cardiovasc Res 21:119–123;1987.

    Google Scholar 

  205. Zhang L, Chase MB, Shen R-F. Molecular cloning and expression of murine thromboxane synthase. Biochem Biophys Res Commun 194:741–748;1993.

    Google Scholar 

  206. Zhang L, Xiao H, Schultz RA, Shen R-F. Genomic organization, chromosomal localization and expression of the murine thromboxane synthase gene(Tbxas1). Genomics 45:519–528;1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, RF., Tai, HH. Thromboxanes: Synthase and receptors. J Biomed Sci 5, 153–172 (1998). https://doi.org/10.1007/BF02253465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253465

Key Words

Navigation